Development of Tetraarylphosphonium/Tetrakis(pentafluorophenyl)borate (TAPR/TFAB) salts as non-aqueous electrolytes for organic redox flow batteries

Main Article Content

ZeAndra Whitfield
Janese Bibbs
Ghislain R Mandouma
John Miller
Matt Bird
Tomoyasu Mani
Reid Wilson

Abstract

A series of weakly coordinating cations/anions (TAPR/TFAB) ion pairs are, herein, being proposed as non-aqueous electrolytes for high capacity ORFBs. These were accessed via a Palladiumcatalyzed approach followed by the simple filtration/isolation of the product. These substituted tetraarylphosphonium/tetrakis(pentafluorophenyl)borate salts 1-4 where the substituents are a pmethoxy (1), a 3,4-dimethoxy (2), a p-phenyl (3), and a p-trimethylsilylacetylene (TMSA) (4) have potential use in several industries owing to their unique solubility in low polarity solvents. These salts constitute a new class of molecular ion pairs which can promote charge dissociation even in low polarity solvents because of their large size and bulkiness. The result being an increased conductivity in those media that can be useful for electrochemistry, advances in catalysis, battery technology, petroleum handling etc. This work supports the national security goal of fostering the development of affordable, clean and renewable energy source and storage.


Abs.png

Downloads

Download data is not yet available.

Article Details

How to Cite
Whitfield, Z., Bibbs, J., Mandouma, G. R., Miller, J., Bird, M., Mani, T., & Wilson, R. (2019). Development of Tetraarylphosphonium/Tetrakis(pentafluorophenyl)borate (TAPR/TFAB) salts as non-aqueous electrolytes for organic redox flow batteries . International Journal for Innovation Education and Research, 7(12), 492-498. https://doi.org/10.31686/ijier.Vol7.Iss12.2098
Section
Articles
Author Biographies

ZeAndra Whitfield, Albany State University

Department of Chemistry and Forensic Science

Janese Bibbs, Albany State University

Department of Chemistry and Forensic Science

Ghislain R Mandouma, Albany State University, USA

Department of Natural Sciences

John Miller, Brookhaven National Laboratory

Chemistry Division

Matt Bird, Brookhaven National Laboratory

Chemistry Division

Tomoyasu Mani, University of Connecticut

Department of Chemistry

Reid Wilson, University of Connecticut

Department of Chemistry

References

1. JD. Milshtein, AP Kaur, MD. Casselman, JA. Kowalski, S. Modekrutti, PL. Zhang, NH. Attanayake, CF. Elliott, SR. Parkin, C. Risko, FR. Brushett and SA. Odom; Energy Environ. Sci., 2016, 9, 3531;
2. P. Denholm, E. Ela, B. Kirby and M. Milligan, The Role of Energy Storage with Renewable Electricity Generation. NREL/TP-6A2-47187, 2010;
3. I. Gyuk, M. Johnson, J. Vetrano, K. Lynn, W. Parks, R. Handa, L. Kannberg, S. Hearne, K. Waldrip and R. Braccio, Grid Energy Storage, US Department of Energy, Washington DC, 2013;
4. Kosuke Izutsu: Electrochemistry in Nonaqueous Solutions, 2002 Wiley-VCH Verlag;
5. RJ. LeSuer, WE. Geiger, Improved electrochemistry in low-polarity media using tetrakis(pentafluorophenyl)-borate salts as supporting electrolytes. Angew Chem Int Eng. Edit. 2000, 39, 248-250;
6. I. Krossing, I. Raabe: Noncoordinating anions - Fact or fiction? A survey of likely candidates. Angew Chem Int Eng. Edit 2004, 43, 2066-2090;
7. WE. Geiger, F. Barriere: Organometallic Electrochemistry Based on Electrolytes Containing
Weakly-Coordinating Fluoroarylborate Anions. Accounts Chem Res 2010, 43, 1030-1039;
8. K. Mpoukouvalas, D. Turp, M. Wagner, K. Mullen, HJ. Butt, G. Floudas, Dissociation and Charge Transport in Salts of Dendronized Ions in Solvents of Low Polarity. J Phys Chem B 2011, 115, 5801-5806;
9. D. Turp, M. Wagner, V. Enkelmann, K. Mullen, Synthesis of Nanometer-Sized, Rigid, and Hydrophobic Anions. Angew Chem Int Eng. Edit 2011, 50, 4962-4965;
10. R. Moritz, G. Zardalidis, HJ. Butt, M. Wagner, K. Mullen, G. Floudas, Ion Size Approaching the Bjerrum Length in Solvents of Low Polarity by Dendritic Encapsulation. Macromolecules 2014, 47, 191-196;
11. R. Moritz, M. Wagner, D. Schollmeyer, M. Baumgarten, K. Mullen, Hydrophobic Encapsulated Phosphonium Salts-Synthesis of Weakly Coordinating Cations and their Application in Wittig Reactions. Chem-Eur J 2015, 21, 9119-9125;
12. R. Boucard, P. Reagan, G. Mandouma, Int. J. Innov. Educ. Res. 2018, 6(2), 116-123;
13. Marcoux, D. Charette, A. B. Palladium-catalyzed synthesis of functionalized tetraarylphosphonium salts. J Org Chem 2008, 73, 590-593;
14. Aurbach, D, Talyosef, Y, Markovsky, B, Markevich, E, Zinigrad, E, Asraf, L, Gnanaraj, J, Kim, H-J. Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochimica Acta 2004, 50, 247-254;