Implementation of 288 KWP Photovoltaic Solar System On-Grid in a Manaus Industrial Polo Company

Main Article Content

Ítalo Pedro Santos de Oliveira
Livia da Silva Oliveira
David Barbosa de Alencar
Manoel Henrique Reis Nascimento

Abstract

The rational use of electricity is practically mandatory, due to the current moment in which the country crosses, mainly due to the reduced reservoir levels of the hydroelectric plants, and where there are high costs in the production of its fuel inputs. fossil fuels, and recent tariff adjustments that the government has been approving year after year, making conventional energy increasingly expensive in the country. Companies and households focus on looking for ways to dodge electricity inflation through clean and renewable energy sources, as is the case here, of photovoltaic solar energy. Aiming to supply about 70% of the electricity bill of a Company of the Manaus-AM Industrial Pole, this work proposes a 288 KWp photovoltaic solar system, consisting of 900 330 W photovoltaic panels, accompanied by 10 Inverters. 30 KW each, connected to the Amazonas Energia Distribution Network, featuring an On-grid solar system, and becoming the largest executed solar energy project in the Amazon and Northern Brazil. The implementation of the system seeks to make feasible and solve the high cost of the electric bill with the application of a solar system, and analyze its investment, financial return and clean energy generation for the next 25 years.

Downloads

Download data is not yet available.

Article Details

How to Cite
Pedro Santos de Oliveira, Ítalo, da Silva Oliveira, L., Barbosa de Alencar, D., & Reis Nascimento, M. H. (2019). Implementation of 288 KWP Photovoltaic Solar System On-Grid in a Manaus Industrial Polo Company. International Journal for Innovation Education and Research, 7(11), 920-926. https://doi.org/10.31686/ijier.Vol7.Iss11.1951
Section
Articles

References

[1] International Energy Agency (IEA). Snapshot of global photovoltaic markets. Mary Brunisholz, IEA PVPS, 2016.
[2] GODOY, Sara; PAMPLONA, João. O protocolo de Kyoto e ospaísesdesenvolvidos. Pesquisa& Debate, São Paulo, v. 18, n. 2, 2017. pp. 330-353.
[3] AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA (Brasil) (ANEEL). Banco de Informações de Geração: BIG. Disponívelem: http://www.aneel.gov.br/informacoes-tecnicas. Acessoem: 22 maio 2019.
[4] http://panorama.comerc.com.br/tag/energia-solar/. Acessoem: 25 de junho de 2019.
[5] Shindell, D.T., Y.H. Lee, and G. Faluvegi, 2016: Climate and health impacts of US emissions reductions consistent with 2°C. Nature Clim. Change, 6, no. 5, 503-507, doi:10.1038/nclimate2935.
[6] SCHMELA, M. Global market outlook for solar power: 2016-2020. Brussels: SolarPower Europe, 2016. Disponívelem: http://www.solarpowereurope.org/fileadmin/user_upload/documents/Events/SolarPower_Webnar_Global_Market_Outlook.pdf. Acessoem: 15 de julho de 2019.
[7] http://www.cresesb.cepel.br/. Acessoem: 27 de abril 2019.
[8] DANTAS, Rafael. A caminho da geração de energialimpa. Algomais – A revista de Pernambuco, jul. 2017. Disponívelem:. Acessoem: 13 set. 2019.
[9] PINHO, Antonio. Manual de Engenharia para sistemasfotovoltaicos. 2. ed. Rio de Janeiro: Cepel, 2014. AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA – ANEEL: “Procedimentos do Programa de EficiênciaEnergética – PROPEE, Módulo 7 – Cálculo de Retorno“. Rio de Janeiro, 2013.
[10] PINHO, J. T.; BARBOSA, C. F. O.: PEREIRA, E. J. S.; SOUZA, H. M. S.: BLASQUES, L. C. M.; GALHARDO, M. A. B.; MACÊDO, W. N. Sistemashíbridos – Soluçõesenergéticas para a Amazônia. 1. Ed. Brasília, Brasil: Ministério de Minas e Energia, 2014. pp. 396.

DB Error: Unknown column 'Array' in 'where clause'