Waste-to-energy technology for the brazilian context

a review article





waste-to-energy, incineration, gasification, pyrolysis, municipal solid waste, energy recovery


Waste-to-Energy Technologies (WtE) have been widely used in European countries, in Japan, in some US cities, and have been growing in China. Currently, in Brazil, there are no WtE power plants in operation, but there are studies on the feasibility of this technology. The Systematic Bibliographic Review (SBR) presented in this mini-review article appears as a result of a process of prospecting documents in the following databases: Science Direct, Web of Science and Scopus. The purpose was to map the articles of the last five years on the applications of WtE technologies in Brazil. From the selection of articles relevant to the research, these documents were registered and cataloged, as well as their qualitative and quantitative analyses. During the systematization process, it was possible to raise hypotheses about which professionals have been working the most on this topic, the journals in which these researches are being published and the keywords most addressed for these case studies. In addition, it was possible to identify the characteristics of the publications related to the theme, the central axes of analysis of the studies and the primary techniques studied for the Brazilian reality. It was also considered part of the results of the present work, the systematization of the main definitions of WtE, the presentation of the main WtE technologies operations, and the exposition of the benefits and impacts of each of these technologies.


Download data is not yet available.

Author Biographies

Natália Dadario, São Paulo State University

Doctoral student of the Program in Agribusiness and Development, School of Sciences and Engineering

Mario Mollo Neto, São Paulo State University

Associate Professor, Dept. of Biosystems Engineering, School of Sciences and Engineering

Cristiane Hengler Corrêa Bernardo, São Paulo State University

School of Sciences and Engineering

Roberto Bernardo, São Paulo State University

Post-graduate of the Program in Agribusiness and Development, School of Sciences and Engineering

Lu´ís Roberto Almeida Gabriel Filho, São Paulo State University

Associate Professor, Dept. of Management, Development and Technology, School of Sciences and Engineering

Camila Pires Cremasco, São Paulo State University

Associate Professor, Dept. of Biosystems Engineering, School of Sciences and Engineering

Felipe André dos Santos, São Paulo State University

Associate Professor, Dept. of Biosystems Engineering, School of Sciences and Engineering


Associação Brasileira De Empresas De Limpeza Pública e Resíduos Especiais – ABRELPE. (2019). Panorama dos Resíduos Sólidos no Brasil - 2018/2019. (Accessed October 07, 2020) at: https://abrelpe.org.br/download-panorama-2018-2019.

Associação Brasileira De Empresas De Limpeza Pública e Resíduos Especiais – ABRELPE. (2012). Caderno Informativo: Recuperação Energética de Resíduos Sólidos Urbanos. (Accessed May 01, 2020) at: http://abrelpe.org.br/download-caderno.

BRASIL. Lei n. 12.305, de 02 de agosto de 2010. Institui a Política Nacional de Resíduos Sólidos; altera a Lei n. 9.605, de 12 de fevereiro de 1998; e dá outras providencias. Diário Oficial da União, Brasília.

Carneiro, M. L. N. M.; Gomes, M. S. P. (2019). Energy, exergy, environmental and economic analysis of hybrid waste-toenergy plants. Energy Conversion and Management, v. 179, 397-417. http://dx.doi.org/10.1016/j.enconman.2018.10.007. DOI: https://doi.org/10.1016/j.enconman.2018.10.007

CEWEP, 2018. Waste-to-Energy: Energising your waste. (Accessed April 29, 2020) at: http://www.cewep.eu/wp-content/uploads/2018/07/Interactive-presentation-2018-New-slides.pdf.

Chhabra, V.; Shastri, Y.; Bhattacharya, S, (2016). Kinetics of pyrolysis of mixed municipal solid waste-A review. Procedia environmental sciences, v. 35, 513-527. https://doi.org/10.1016/j.proenv.2016.07.036. DOI: https://doi.org/10.1016/j.proenv.2016.07.036

Colvero, D. A.; Ramalho, J.; Gomes, A. P. D.; Matos, M. A. A.; Tarelho, L. A. C. (2020). Economic analysis of a shared municipal solid waste management facility in a metropolitan region. Waste Management, v. 102, 823-837. https://doi.org/10.1016/j.wasman.2019.11.033. DOI: https://doi.org/10.1016/j.wasman.2019.11.033

Conforto, E. C.; Amaral, D. C.; Silva, S. L. (2011). Roteiro para revisão bibliográfica sistemática: aplicação no desenvolvimento de produtos e gerenciamento de projetos. In: Anais do 8 Congresso Brasileiro de Gestão de Desenvolvimento de Produto–CBGDP, Porto Alegre, RS. (Accessed October 07, 2020) at: http://www.ufrgs.br/cbgdp2011/downloads/9149.pdf.

Dalmo, F. C.; Simão, N. M; Nebra, S.; Sant’ana, P. H. M. (2019a). Energy recovery from municipal solid waste of intermunicipal public consortia identified in São Paulo State. Waste Management & Research, v. 37, (3), 301-310. https://doi.org/10.1177%2F0734242X18815953. DOI: https://doi.org/10.1177/0734242X18815953

Dalmo, F. C.; Simão, N. M; Lima, H. Q.; Jimenez, A, C, M.; Nebra, S.; Martins, G.; Palacios-Bereche, R.; Sant’ana, P. H. M. (2019b). Energy recovery overview of municipal solid waste in São Paulo State, Brazil. Journal of Cleaner Production, v. 212, 461-474. https://doi.org/10.1016/j.rser.2018.11.007. DOI: https://doi.org/10.1016/j.jclepro.2018.12.016

Ferreira, E. T. F.; Balestieri, J. A. P. (2018). Comparative analysis of waste-to-energy alternatives for a low-capacity power plant in Brazil. Waste Management & Research, v. 36, (3), 247-258. https://doi.org/10.1177%2F0734242X17751849. DOI: https://doi.org/10.1177/0734242X17751849

Hoornweg, D., Bhada-Tata, P. (2012). What a waste: a global review of solid waste management. Urban development series; knowledge papers no. 15. World Bank, Washington, DC. World Bank. (Accessed May 01, 2020) at: https://openknowledge.worldbank.org/handle/10986/17388

International Energy Agency - IEA, (2019). Will energy from waste become the key form of bioenergy in Asia? Analysis from Renewables 2018. (Accessed April 30, 2020) at: https://www.iea.org/newsroom/news/2019/january/will-energy-from-waste-become-the-key-form-of-bioenergy-in-asia.html.

Intergovernmental Panel on Climate Change - IPCC (2014). AR 5 Climate Change 2014. Mitigation of Climate Change. Chapter 10 – Industry. (Accessed May 01, 2020) at: https:// www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter10.pdf. DOI: https://doi.org/10.1017/CBO9781107415416

Jimenez, A. C. M.; Nordi, G. H.; Bereche, M. C. P.; Bereche, R. P.; Gallego, A. G.; Nebra. S. A., (2017). Evaluation of two different alternatives of energy recovery from municipal solid waste in Brazil. Waste Management & Research, v. 35, (11), 1137-1148. https://doi.org/10.1177/0734242x17728123. DOI: https://doi.org/10.1177/0734242X17728123

Jimenez, A. C. M; Bereche, R. P.; Nebra. S. A. (2019). Three municipal solid waste gasification technologies analysis for electrical energy generation in Brazil. Waste Management & Research, v. 37, (6), 631-642. https://doi.org/10.1177%2F0734242X19841126. DOI: https://doi.org/10.1177/0734242X19841126

Kalyani, K. A., Pandey, K. K. (2014). Waste to energy status in India: a short review. Renewable and Sustainable Energy Reviews, v. 31, 113-120. https://doi.org/10.1016/j.rser.2013.11.020. DOI: https://doi.org/10.1016/j.rser.2013.11.020

Levy, Y.; Ellis, T. J. (2006). A system approach to conduct an effective literature review in support of information systems research. Informing Science Journal, v. 9, 181-212. https://doi.org/10.28945/479. DOI: https://doi.org/10.28945/479

Lima, P. M.; Olivo, F.; Paulo, P. L.; Schalch, V. Cimpan, C. (2019). Life Cycle Assessment of prospective MSW management based on integrated management planning in Campo Grande, Brazil. J. Waste Management, v. 90, 59-71. https://doi.org/10.1016/j.wasman.2019.04.035. DOI: https://doi.org/10.1016/j.wasman.2019.04.035

Lino, F. A. M; Ismail, K. A. R. (2017). Incineration and recycling for MSW treatment: Case study of Campinas, Brazil. Sustainable Cities and Society, v. 35, 752-757. http://dx.doi.org/10.11648/j.ijepe.20150404.12. DOI: https://doi.org/10.1016/j.scs.2017.09.028

Lino, F. A. M; Ismail, K. A. R. (2018). Evaluation of the treatment of municipal solid waste as renewable energy resource in Campinas, Brazil. Sustainable Energy Technologies and Assessments, v. 29, 19-25. https://doi.org/10.1016/j.seta.2018.06.011. DOI: https://doi.org/10.1016/j.seta.2018.06.011

Lopes, E. J., Queiroz, N.; Yamamoto, C. I.; Costa Neto, P. R. (2018a). Evaluating the emissions from the gasification processing of municipal solid waste followed by combustion. J. Waste Management, v. 73, 504-510. https://doi.org/10.1016/j.wasman.2017.12.019. DOI: https://doi.org/10.1016/j.wasman.2017.12.019

Lopes, E. J.; Okamura, L. A.; Maruyama, S. A.; Yamamoto, C. I., (2018b). Evaluation of energy gain from the segregation of organic materials from municipal solid waste in gasification processes. Renewable Energy, v. 116, 623-629. https://doi.org/10.1016/j.renene.2017.10.018. DOI: https://doi.org/10.1016/j.renene.2017.10.018

Luz, F. C.; Rocha, M. H.; Lora, E. E. S.; Venturini, O. J.; Andrade, R. V.; Leme, M. M. V.; Olmo, O. A. (2015). Techno-economic analysis of municipal solid waste gasification for electricity generation in Brazil. Energy Conversion and Management, v. 103, 321-337. https://doi.org/10.1016/j.enconman.2015.06.074. DOI: https://doi.org/10.1016/j.enconman.2015.06.074

Mayer, F.;Bhandari, R.; Gäth, S. (2019). Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies. Science of the Total Environment, v. 672, 708-721. http://dx.doi.org/10.1016/j.scitotenv.2020.137731. DOI: https://doi.org/10.1016/j.scitotenv.2019.03.449

Nordi, G. H.; Palacios-Bereche, R., Gallego, A. G.; Nebra, S. A. (2017). Electricity production from municipal solid waste in Brazil. J. Waste Management & Research, v. 35, (7), 709-720. https://doi.org/10.1177%2F0734242X17705721. DOI: https://doi.org/10.1177/0734242X17705721

Nuss, P.; Bringezu, S.; Gardner, K. H. (2012). Waste-To-Materials: the long term option. In: Karagiannidis, A. (Ed.), Waste to Energy. Springer, London, pp. 1–26. DOI: https://doi.org/10.1007/978-1-4471-2306-4_1

Pin, B. V. R.; Barros, R. M.; Lora, E. E. S.; Santos, I. F. S. (2018). Waste management studies in a Brazilian microregion: GHG emissions balance and LFG energy project economic feasibility analysis. Energy Strategy Reviews, v. 19, 31-43. DOI: https://doi.org/10.1016/j.esr.2017.11.002

Ren, X.; Che, Y.; Yang, K.; Tao, Y. (2016). Risk perception and public acceptance towards a highly protested Waste-to-Energy facility. Waste Management, v. 48, 528-539. https://doi.org/10.1016/j.wasman.2015.10.036. DOI: https://doi.org/10.1016/j.wasman.2015.10.036

Santos, R. E.; Santos, I. F. S.; Barros, R. M.; Bernal, A. P.; Tiago Filho, G. L.; Silva, F. G. B. (2019). Generating electrical energy through urban solid waste in Brazil: An economic and energy comparative analysis. Journal of Environmental Management, v. 231, 198-206. https://doi.org/10.1016/j.jenvman.2018.10.015. DOI: https://doi.org/10.1016/j.jenvman.2018.10.015

Saraiva, A. B.; Souza, R. G.; Valle, R. A. B. (2017). Comparative lifecycle assessment of alternatives for waste management in Rio de Janeiro – Investigating the influence of an attributional or consequential approach. Waste Management, v. 68, 701-710. http://dx.doi.org/10.1016/j.wasman.2017.07.002. DOI: https://doi.org/10.1016/j.wasman.2017.07.002

Science Direct. (1997). (Accessed February 03, 2020) at: http://www.sciencedirect.com.

Scopus. (2004). (Accessed February 03, 2020) at: http://www.elsevier.com/scopus.

Silva,L. J. V. B.; Santos, I. F. S.; Mensah, J. H. R.; Gonçalves, A. T. T.; Barros, R. M. (2020). Incineration of municipal solid waste in Brazil: An analysis of the economically viable energy potential. Renewable Energy, v. 149, 1386-1394. DOI: https://doi.org/10.1016/j.renene.2019.10.134

Silva Filho, V. F.; Batistella, L.; Alves, J. L. F.; Silva, J. C. G.; Althoff, C. A.; Moreira, R. F. P. M.; José, H. J. (2019). Evaluation of gaseous emissions from thermal conversion of a mixture of solid municipal waste and wood chips in a pilot-scale heat generator. Renewable Energy, v. 141, 402-410. https://doi.org/10.1016/j.renene.2019.04.032. DOI: https://doi.org/10.1016/j.renene.2019.04.032

Soares, R. R.; Miyamaru, E. S.; Martins, G. (2017). Environmental performance of the allocation and urban solid waste treatment with energetic reuse through life cycle assessment at CTR – Caieiras. Engenharia Sanitária e Ambiental, v. 22, (5), 993-1003. DOI: https://doi.org/10.1590/s1413-41522017155522

Souza, A. R.; Silva, A. T. Y. L.; Trindade, A. B.; Freitas, F. F.; Anselmo, J. A. (2019). Analysis of the potential use of landfill biogas energy and simulation of greenhouse gas emissions of different municipal solid waste management scenarios in Varginha, MG, Brazil. Engenharia Sanitária e Ambiental, v. 24, (5), 887-896. https://doi.org/10.1590/s1413-41522019187066. DOI: https://doi.org/10.1590/s1413-41522019187066

Solid Waste Association of North America – SWANA. (2018). Solid Waste Management to Resource Efficiency and Energy Recovery in The United States. (Accessed April 30, 2020) at: http://www.foroenres2018.mx/presentaciones/13_10%20de%20oct%20Sara%20Bixby.pdf.

Tabasová, A.; Kropá, J.; Kermes, V.; Nemet, A.; Stehlík, P. (2012). Waste-to-energy technologies: impact on environment. Energy, v. 44, (1), 146 – 155. https://doi.org/10.3390/en6010045 DOI: https://doi.org/10.1016/j.energy.2012.01.014

Tagul Word Cloud. (2017). (Accessed April 21, 2020) at: https://wordart.com/create.

Themelis, N. J.; Barriga, M. E. D.; Estevez, P.; Velasco, M. G. (2013). Guidebook for the Application of WTE Technologies in Latin America and The Caribbean. Earth Engineering Center, Columbia University - EEC/IDB. (Accessed May 05, 2020) at: http://www.seas.columbia.edu/earth/wtert/pressreleases/Guidebook_WTE_v5_July25_2013.pdf.

Tisi, Y. S. A. B. (2019). Waste-to-Energy: recuperação energética como forma ambientalmente adequada de destinação dos resíduos sólidos urbanos. Synergia, Rio de Janeiro, 240 pp.

Tolmasquim, M., T. (2016). Renewable energy: hydraulics, biomass, wind, solar, ocean (in Portuguese). Rio de Janeiro (BR): Empresa de Pesquisa Energética,. pp. 452. (Accessed May 05, 2020) at: http://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/



Trindade; A. B.; Palácio, J. C. E.; González, A. M.; Orozco, D. J. R.; Lora, E. E. S.; Renó, M. L. G.; Olmo, O. A. (2018). Advanced exergy analysis and environmental assessment of the steam cycle of an incineration system of municipal solid waste with energy recovery. Energy Conversion and Management, v. 157, 195-214. https://doi.org/10.3390/en12122378. DOI: https://doi.org/10.1016/j.enconman.2017.11.083

Veloso, S. (2013). BRICS and the Challenges in Fighting Inequality. Oxfam, Rio de Janeiro.

Waste Atlas. (2013). (Accessed April 09, 2020) at: http://www.atlas.d-waste.com.

Web of Science. (1997). (Accessed February 03, 2020) at: http://www.webofknowledge.com.

Zhao, X. G., Jiang, G. W., Li, A., Wang, L. (2016). Economic analysis of waste-to-energy industry in China. DOI: https://doi.org/10.1016/j.wasman.2015.10.014




How to Cite

Dadario, N., Mollo Neto, M., Hengler Corrêa Bernardo, C., Bernardo, R., Almeida Gabriel Filho, L. R., Cremasco, C. P., & dos Santos, F. A. (2021). Waste-to-energy technology for the brazilian context: a review article. International Journal for Innovation Education and Research, 9(9), 427–448. https://doi.org/10.31686/ijier.vol9.iss9.3367

Most read articles by the same author(s)

1 2 > >>