Morphologic, structural, and magnetic characterization of cobalt ferrite nanoparticles synthesized at different temperatures

Authors

  • Kétlin Santos Alberton Federal Institute of Rondônia image/svg+xml
  • Liza Bruna Reis Monteiro Federal Institute of Rondônia image/svg+xml
  • Anne Beatriz Ramos Moraes Federal Institute of Rondônia image/svg+xml
  • Raynara Vitória dos Santos Paiva Bucar Federal Institute of Rondônia image/svg+xml
  • Maicon Maciel Ferreira de Araujo Federal Institute of Rondônia image/svg+xml
  • Moacy José Stoffes Junior Instituição: Instituto Federal do Paraná
  • Cléver Reis Stein Federal Institute of Rondônia image/svg+xml

DOI:

https://doi.org/10.31686/ijier.vol9.iss9.3355

Keywords:

Co-precipitation, temperature, cobalt ferrite nanoparticle, hysteresis cycle

Abstract

In this study we report on the synthesis and characterization of cobalt ferrite (CoFe2O4) nanoparticles (NPs), synthesized by chemical co-precipitation in alkaline medium. Two samples were synthesized at two different temperatures, 35 and 90 oC. Both samples were characterized by Transmission Electron Microscopy (TEM), x-ray diffraction (XRD), and room-temperature (RT) magnetization. Two samples showed superparamagnetic behavior (SPM) at RT. TEM reveals morphological mean diameter increasing 5.8 nm to 10.4 nm, with the increase of the co-precipitation temperature. XRD confirm the inverse cubic spinel structure. The RT magnetization curves were analyzed by the first-order Langevin function averaged out by a lognormal distribution function of magnetic moments. This analysis showed saturation magnetization and magnetic moment increases from 60.2 to 74.8 emu/g and from 3.9 x 103 to 8.2 x 103 mB, respectively.

Downloads

Download data is not yet available.

Author Biographies

Kétlin Santos Alberton, Federal Institute of Rondônia

Campus Porto Velho Calama

Liza Bruna Reis Monteiro, Federal Institute of Rondônia

Campus Porto Velho Calama

Anne Beatriz Ramos Moraes, Federal Institute of Rondônia

Campus Porto Velho Calama

Raynara Vitória dos Santos Paiva Bucar, Federal Institute of Rondônia

Campus Porto Velho Calama

Maicon Maciel Ferreira de Araujo, Federal Institute of Rondônia

Campus Porto Velho Calama

Moacy José Stoffes Junior, Instituição: Instituto Federal do Paraná

Campus Telêmaco Borba

Cléver Reis Stein, Federal Institute of Rondônia

Campus Porto Velho Calama

References

E. Tirosh, G. Shemer, and G. Markovich, “Optimizing cobalt ferrite nanocrystal synthesis using a magneto-optical probe,”. Chem. Mater. 18, 465 – 470 (2006).

H. Gu, K. Xu, Z. Yang, C. K. Chang, and B. Xu, “Synthesis and cellular uptake of porphyrin decorated iron oxide nanoparticles-a potential candidate for bimodal anticâncer therapy,” Chem. Commun. 34, 4270-4272 (2005). DOI: https://doi.org/10.1039/b507779f

P. C. Morais, E. C. O. Lima, “Técnicas de preparação de nanopartículas magnéticas e fluidos magnéticos,” In: N. Duran, L. H. C. Mattoso, and P. C. Morais, (Org). “Nanotecnologia: Introdução, preparação e caracterização de nanomateriais e exemplos de aplicação,” 1 ed. São Paulo: artliber, 1, 83 (2006).

G. Baldi, D. Bonacchi, C. Innocenti, G. Lorenzi, and C. Sangregorio, “Cobalt ferrite nanoparticles: The control of the particle size and surface state and their effects on magnetic properties,” J. Magn. Magn. Mater. 311, 10-16 (2007). DOI: https://doi.org/10.1016/j.jmmm.2006.11.157

U. Luders, A. Barthelemy, M. Bibes, K. Bouzehouane, S. Fusil, E. Jacquet, J. P. Contour, J. F. Bobo, J. Fontcuberta, and A. Fert, “NiFe2O4: A versatile spinel material brings new opportunities for spintronics,” Adv. Mater. 18, 1733-1736 (2006). DOI: https://doi.org/10.1002/adma.200500972

B. Payet, D. Vincent, L. Delaunay, G. Noyel, “Influence of particle size distribution on the initial susceptibility of magnetic fluids in the Brown relaxation range” J. Magn. Magn. Mater. vol. 186, pp. 168-174, Jul. 1998. DOI: https://doi.org/10.1016/S0304-8853(98)00082-1

C. R. Stein, M. T. S. Bezerra, G. H. A. Holanda, J. André-Filho, and P. C. Morais, “Structural and magnetic properties of cobalt ferrite nanoparticles synthesized by co-precipitation at increasing temperatures,” AIP Adv. 8, pp. 056303 (1-8) 2017. DOI: https://doi.org/10.1063/1.5006321

Z. Iatridi, K. Vamvakidis, I. Tsougos, K. Vassiou, C. Dendrinou-Samara, and G. Bokias, “Multifunctional Polymeric Platform of Magnetic Ferrite Colloidal Superparticles for Luminescence, Imaging, and Hyperthermia Applications,” ACS Appl. Mater. Interfaces, 8, pp. 35059–35070, 2016. DOI: https://doi.org/10.1021/acsami.6b13161

A. Rossato, L. S. Silveira, P. S. Oliveira, T. T. Souza, A. P. Becker, R. Wagner, B. Kein, W. P. Souza Filho, R. C. V. Santos, D. Souza, M. D. Baldissera, M. R. Sagrillo, “Safety profile, antimicrobial and antibiofilm activities of a nanostructured lipid carrier containing oil and butter from Astrocaryum vulgare: in vitro studies” International Journal for Innovation Education and Research.9(5), 478-497 (2021). DOI: https://doi.org/10.31686/ijier.vol9.iss5.3113

B. M. Lacava, R. B. Azevedo, L. P. Silva, Z. G. M. Lacava, K. Skeff Neto, N. Buske, A. F. Bakuzis, and P. C. Morais, “Particle sizing of magnetite-based magnetic fluid using atomic force microscopy: A comparative study with electron microscopy and birefringence,” Appl. Phys. Lette. 77 1876-1878 (2000). DOI: https://doi.org/10.1063/1.1311320

S. Zhang, D. Dong, Y. Sui, Z. Liu, H. Wang, Z. Qian, and W. Su, “Preparation of core shell particles consisting of cobalt ferrite and silica by sol-gel process,” J. Alloy. Comp. 415 257-260 (2006). DOI: https://doi.org/10.1016/j.jallcom.2005.07.048

E. Tirosh, G. Shemer, and G. Markovich, “Optimizing cobalt ferrite nanocrystal synthesis using a magneto-optical probe,” Chem. Mater. 18 465-470 (2006). DOI: https://doi.org/10.1021/cm052401p

K. V. P. M. Shafi, A. Gedanken, R. Prozorov, and J. Balogh, “Sonochemical preparation and size-dependent properties of nanostructured CoFe2O4 particles” Chem. Mater. 10 3445 – 3450 (1998). DOI: https://doi.org/10.1021/cm980182k

Q. Fanyao and P. C. Morais, “An oxide semiconductor nanoparticle in na aqueous medium: A surface charge density investigation,” J. Phys. Chem. 104 5232-5237 (2000). DOI: https://doi.org/10.1021/jp993783n

M. Rejandra, R. C. Pullar, A. K. Bhattacharya, D. Das, S. N. Chintalapudi, and C. K. Majumdar, “Magnetic properties of nanocrystalline CoFe2O4 powders prepared at room temperature: variation with crystallite size,” J. Magn. Magn. Mater. 232 71 – 83 (2001). DOI: https://doi.org/10.1016/S0304-8853(01)00151-2

J. F. Friedrich, J. T. Santos, A. R. Pohl, V. S. K. Nishihira, M. Brondani, J. D. Lara, I. D. Franceschi, L. R. Feksa, R. P. Raffin, “Nanocapsules with naringin and naringenin affect hepatic and renal energy metabolism without altering serum markers of toxicity in rats” International Journal for Innovation Education and Research.8(10), 250-262 (2020). DOI: https://doi.org/10.31686/ijier.vol8.iss10.2676

N. Moumen, and M. P. Pileni, “New Syntheses of cobalt ferrite particles in the range 2 – 5 nm: Comparison of the magnetic properties of the nanosized particles in dispersed fluid or in powder form,” Chem. Mater. 8, 1128 – 1134 (1996). DOI: https://doi.org/10.1021/cm950556z

Y. Li, and C. W. Park, “Particle size distribution in the synthesis of nanoparticles using microemulsions,” Langmuir, 15(4), 952-956 (1999). DOI: https://doi.org/10.1021/la980550z

R. Massart, “Magnetic fluid and process for obtaining them,” 4329241. US Patent (1982).

C. N. Chinnasamy, M. Senoue, B. Jeyadevan, O Perales-Perez, K. Shinoda, and K. Tohji, “Synthesis of size-controlled cobalt ferrite particles with high coercivity and squareness ratio,” J. Coll. Inter. Scien. 263, 80-83 (2003). DOI: https://doi.org/10.1016/S0021-9797(03)00258-3

V. M. Boujoreanu, and E. Segal, “On the dehydratation of mixed oxides powders coprecipitated from aqueous solutions,” Soli. Stat. Scien. 3, 407-415 (2001). DOI: https://doi.org/10.1016/S1293-2558(01)01152-9

Y. Kim, D. Kim, and C. S. Lee, “Synthesis and characterization of COFE2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method,” Phys. B. 337, 42-51 (2003). DOI: https://doi.org/10.1016/S0921-4526(03)00322-3

C. N. Chinnasamy, B. Jeyadevan, O. Perrales-Perez, K. Shinoda, K. Tohji, and A. Kasuya, “Growth dominant co-precipitaion process to achieve high coercivity at room temperature in CoFe2O4 nanoparticles,” IEEE Trans. Magn. 38(5), 2640-2642 (2002). DOI: https://doi.org/10.1109/TMAG.2002.801972

Downloads

Published

01-09-2021

How to Cite

Alberton, K. S., Monteiro, L. B. R., Moraes, A. B. R., Bucar, R. V. dos S. P., Araujo, M. M. F. de, Junior, M. J. S., & Stein, C. R. (2021). Morphologic, structural, and magnetic characterization of cobalt ferrite nanoparticles synthesized at different temperatures. International Journal for Innovation Education and Research, 9(9), 399–405. https://doi.org/10.31686/ijier.vol9.iss9.3355