Pereskia aculeata vibrational model by Raman characterization and DFT method
Main Article Content
Abstract
Raman scattering was used to obtain vibrational modes in a Pereskia aculeata sample. The obtained spectrum was compared with quercetin's theoretical spectra, kaempferol, isorhamnetin, rutinose, caffeic, and tartaric acid, generated from the density functional theory (DFT) method, which used structures of the known composition present in the sample. Among the main compounds, phenolic acids and flavonoids are mentioned. Vibrational signatures, designated as CO and CH group modes, are abundant and bands in the region between 800 and 1800 cm-1. This showed that the theoretical and experimental results had good correspondence between the flavonoids. Statistical observations of correlation and principal component analysis (PCA) were used, which helped in the process of correlation between sample and data obtained. Theoretical spectra have been corrected by a single scale factor of 0.961, and vibrational contributions by the molecular group were via VEDA software.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, will not be published elsewhere in the same form, in English or in any other language, without the written consent of the Publisher. The Editors reserve the right to edit or otherwise alter all contributions, but authors will receive proofs for approval before publication.
Copyrights for articles published in IJIER journals are retained by the authors, with first publication rights granted to the journal. The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author.
References
Agarwal UP, Analysis of Cellulose and LignocelluloseMaterials by Raman Spectroscopy: A Review of the Current Status, Molecules, 2019, 24, 1659. https://doi.org/10.3390/molecules24091659
Alston JM, Beddow JM, Pardey PG, Agricultural Research, Productivity, and Food Prices in the Long Run. Science, 2009, 325, 1209–1210. DOI:10.1126/science.1170451
Bauschlicher CW, Langhoff SR, The calculation of accurate harmonic frequencies of large molecules: the polycyclic aromatic hydrocarbons, a case study, Spectrochim. Acta A, 1997, 53, 1225-1240. https://doi.org/10.1016/S1386-1425(97)00022-X
Bauschlicher CW, Ricca A, On the calculation of the vibrational frequencies of polycyclic aromatic hydrocarbons, Mol. Phys., 2010, 108, 2647-2654. http://dx.doi.org/10.1080/00268976.2010.518979
Becke AD., Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648. https://doi.org/10.1063/1.464913
Bunaciu A, Aboul-Enein HY, Hoang VD, Vibrational Spectroscopy Applications in Biomedical, Pharmaceutical and Food Sciences, Copyright, Elsevier Inc., 2020, 15-36.
Calixto C, Thiemi D, Natally K, Souza P, Crestani S, Gasparotto A, Laverde U., Involvement of arginine-vasopressin in the diuretic and hypotensive effects of Pereskia grandifolia Haw. (Cactaceae), J. Ethnopharmacol, 2012, 144, 86-93. https://doi.org/10.1016/j.jep.2012.08.034
Conners T, Banerjee S, Surface Analysis of Paper. Ed. CRC, Mississippi, 1995.
Costa, Agostini-Costa TS., Bioactive compounds and health benefits of Pereskioideae and Cactoideae: A review, Food Chem., 2020, 327, 126961. https://doi.org/10.1016/j.foodchem.2020.126961
Costa S, Richter A, Schmidt U, Breuninger S, Hollricher O, Confocal Raman microscopy in life sciences, Morphologie, 2019, 103, 11-16. https://doi.org/10.1016/j. morpho.2018.12.003.
Desa, U., Population division working paper no. ESA/P/WP, 2015, 241.
Ditchheld R, Hehre WJ., Pople JA, Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis forMolecular-Orbital Studies of OrganicMolecules, J. Chem. Phys., 1971, 54, 724. https://doi.org/10.1063/1.1674902
Erdogdu Y, Baskose UC, Saglam S, Erdogdu M, Ogutcu H, Özçelik S., Structural, thermal, spectroscopic, electronic and biological activity properties of coumarin-153 dyes for DSSCs: A DFT benchmark study, J. Mol. Struc., 2020, 1221, 128873. https://doi.org/10.1016/j.molstruc.2020.128873
Ferreres F, Grosso C, Gil-Izquierdo A, Valentao P, Mota AT, Andrade PB., Optimization of the recovery of high-value compounds from pitaya fruit by-products using microwave-assisted extraction, Food Chem, 2017, 230, 463–474. https://doi.org/10.1016/j.foodchem.2017.03.061
Garcia AAJ, Corrêa RCG, Barros L, Pereira C, Abreu RMV, Alves MJ, Calhelha RC, Bracht A, Peralta RM, Ferreira IC, Phytochemical prole and biological activities of ’Ora-Pro-Nóbis’ leaves (Pereskia aculeataMiller), an underexploited superfood from the Brazilian Atlantic Forest, Food Chem., 2019, 294, 302-308. https://doi.org/10.1016/j.foodchem.2019.05.074
Gaussian 03, Revisão C.02, MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, JA Montgomery, Jr., T. Vreven, KN Kudin, JC Burant, JM Millam, SS Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, GA Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, JE Knox, HP Hratchian, JB Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, RE Stratmann, O. Yazyev, AJ Austin, R. Cammi, C. Pomelli, JW Ochterski, PY Ayala, K. Morokuma, GA Voth, P. Salvador, JJ Dannenberg, VG Zakrzewski, S. Dapprich, AD Daniels, MC Strain, O. Farkas, DK Malick, AD Rabuck, K. Raghavachari, JB Foresman, JV Ortiz, Q. Cui, AG Baboul, S. Clifford, J.Cioslowski, BB Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, RL Martin, DJ Fox, T. Keith, MA Al-Laham, CY Peng, A. Nanayakkara, M. Challacombe, PMW Gill, B. Johnson, W. Chen, MW Wong, C. Gonzalez e JA Pople, Gaussian, Inc., Wallingford CT, 2004.
Gerland P, Raftery AE, Ševčíková H, Li N, Gu D, World population stabilization unlikely this century, Science, 2014, 346, 234-237. DOI:10.1126/science.1257469
Gierlinger N, Schwanninger M., The potential of Raman microscopy and Raman imaging in plant research, J. Spectrosc., 2007, 21, 69. https://doi.org/10.1155/2007/498206
Godfray H, Beddington JR, Crute I, Haddad L, Lawrence D, Muir J, Pretty J, Robinson S, Thomas S, Toulmin C, Food Security: The Challenge of Feeding 9 Billion People, Science, 2010, 327, 812–818. DOI:10.1126/science.1185383
Goncalves ASM, Peixe RG, Sato A, Muzitano MF, Souza R, Machado TD, Leal I, Pilosocereus arrabidae (Byles & Rowley) of the Grumari sandbank, RJ, Brazil: Physical, chemical characterizations and antioxidant activities correlated to detection of flavonoids, Food Res. Int., 2015, 70, 110–117. https://doi.org/10.1016/j.foodres.2014.10.009
Hehre WJ, Ditchheld R, Pople JA., Self-Consistent Molecular Orbital Methods. XII. Further extensions of Gaussian type basis sets for use in molecular-orbital studies of organic-molecules, J. Chem. Phys., 1972, 56, 2257. https://doi.org/10.1063/1.1677527
Huang F, Li Y, Guo H, Xu Z, Chen J, Zhang Y, Identification of waste cooking oil and vegetable oil via Raman spectroscopy, J. Raman Spectrosc., 2016, 47, 860–864. https://doi.org/10.1002/jrs.4895
Hu R, He T, Zhang Z, Yang Y, Liu M, Safety analysis of edible oil products via Raman spectroscopy, Talanta, 2019, 191, 324-332. https://doi.org/10.1016/j.talanta.2018.08.074.
Jamróz, MH. Vibrational Energy Distribution Analysis, VEDA 4 program, Warsaw, Poland, 2004.
Jamróz MH, Vibrational Energy Distribution Analysis (VEDA): Scopes and limitations. Spectroch. Acta A, 2013, 114, 220–230. https://doi.org/10.1016/j.saa.2013.05.096
Kalasinsky KS, Hadheld T, Shea AA, Kalasinsky VF, Nelson MP, Neiss J, Drauch AJ, Vanni G, Treado P, Raman Chemical Imaging Spectroscopy Reagentless Detection and Identification of Pathogens: Signature Development and Evaluation, Anal. Chem., 2007, 79, 2658-2673. https://doi.org/10.1021/ac0700575
Karacaglar N, Bulati T, Boyaci IH, Topcu A, Raman spectroscopy coupled with chemometric methods for the discrimination of foreign fats and oils in cream and yogurt, J. Food Drug Anal., 2019, 27, 101-110. https://doi.org/10.1016/j.jfda.2018.06.008
Komjáti B, Urai Á, Hosztah S, Kökösi J, Kováts B, Nagy J, Horváth P., Systematic study on the TD-DFT calculated electronic circular dichroism spectra of chiral aromatic nitro compounds: A comparison of B3LYP and CAM-B3LYP, Spectrochim. Acta A, 2016, 155, 95-102. https://doi.org/10.1016/j.saa.2015.11.002
Larkin P, Infrared and Raman Spectroscopy: Principles and Spectral Interpretation, 2nd ed., Elsevier, 2018.
Lee C, Yang W, Parr RG, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
Lu L, Hu H, Hou H, Wang B., An improved B3LYP method in the calculation of organic thermochemistry and reactivity, Comput. Theor. Chem., 2013, 1015, 64-71. https://doi.org/10.1016/j.comptc.2013.04.009
Lupoi J, Gjersing E, Davis EM, Evaluating Lignocellulosic Biomass, Its Derivatives, and Downstream Products with Raman Spectroscopy, Frente. Bioeng. Biotechnol., 2015, 3, 50. https://www.frontiersin.org/article/10.3389/ fbioe.2015.00050
Machado DC, Pinto ND, Silva JM, Conegundes JLM, Gualberto ACM, Gameiro J, Scio E., Pereskia aculeata: A plant food with antinociceptive activity, Pharm. Biol. 2015, 1, 1780-1785. https://doi.org/10.1016/j.jep.2015.07.032
Mahesar SA, Sherazi S, Khaskheli AR, Kandhro AA, Uddin S, Analytical approaches for the assessment of free fatty acids in oils and fats, Anal. Methods, 2014, 6, 4956-4963. https://doi.org/10.1039/C4AY00344F
Makarem M, Lee CM, Kahe K, Huang S, Chae I, Yang H, Kubicki JD, Kim SH, Probing cellulose structures with vibrational spectroscopy, Cellulose, 2019, 26, 35–79. https://doi.org/10.1007/s10570-018-2199-z
Mattioda A, Bauschlicher CW, Infrared spectroscopy of matrix-isolated neutral polycyclic aromatic nitrogen heterocycles: The acridine series, Spectrochim. Acta A, 2017, 181, 286–308. http://dx.doi.org/10.1016/j.saa.2017.03.044
NIST, National Institute of Standards and Technology, 2020. https://cccbdb.nist.gov/vibscalejust.asp
Nogales-Bueno J, Baca-Bocanegra B, Rooney A, Hernández-Hierro JM, Byrne HJ, Heredia FJ, Study of phenolic extractability in grape seeds by means of ATR-FTIR and Raman spectroscopy. Food Chem., 2017, 232, 602-609. https://doi.org/10.1016/j.foodchem.2017.04.049
Nyquist RA, Kagel RO, Handbook of infrared and Raman spectra of inorganic compounds and organic salts: infrared spectra of inorganic compounds, Academic press inc., 1971.
Ozkan G, Sagdic O, Ekici L, Ozturk I, Ozkan M, J., Phenolic compounds of Origanum sipyleum L. extract, and Its antioxidant and antibacterial activities, J. Food Lipids, 2007, 14, 157-169. https://doi.org/10.1111/j.1745-4522.2007.00077.x
Petersson GA, Al-Laham M., A complete basis set model chemistry. II. Open-shell systems and the total energies of the rst-row atoms, J. Chem. Phys., 1991, 94, 6081-90. https://doi.org/10.1063/1.460447
Pinto N, Duque A, Pacheco N, Mendes R, Motta E, Bellozi P. Scio E, Pharm. Biol. 1, 2015 1780-1785. https://doi.org/10.3109/13880209.2015.1008144
Rakymzhan A, Yakupov T, Yelemessova Z, Bukasov R, Yakovlev VV, Utegulov ZN, Time-resolved assessment of drying plants by Brillouin and Raman spectroscopies, J. Raman Spectrosc. 2019, 50, 1881-1889. https://doi.org/10.1002/jrs.5742
Raman CV, Krishnan KS., The production of new radiations by light scattering. Part I Proc. R. Soc. Lond. A. Math., 1929, 122, 23-35. http://dspace.rri.res.in/handle/2289/2143
Ramya T, Gunasekaran S, Ramkumaar GR., Density functional theory, restricted Hartree – Fock simulations and FTIR, FT-Raman and UV–Vis spectroscopic studies on lamotrigine, Spectrochim. Acta A, 2013, 114, 277-283. https://doi.org/10.1016/j.saa.2013.05.057
Rassolov VA, Pople JA, Ratner MA, Windus TL., 6-31G* basis set for atoms K through Zn, J. Chem. Phys.,1998, 109, 1223-29. https://doi.org/10.1063/1.476673
Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss L, 6-31G* Basis Set for Third-Row Atoms. J. Comp. Chem., 2001, 22, 976-984. https://doi.org/10.1002/ jcc.1058
Saleem M, Atta BM, Ali Z, Bilal M, Laser-induced fluorescence spectroscopy for early disease detection in grape fruit plants, Photochem. Photobiol. Sci., 2020, 19, 713–721. https://doi.org/10.1039/C9PP00368A
Saraiva AGQ, Saraiva GD, Albuquerque RL, Nogueira CES, Teixeira AMR, Lima LB, Cruz BG, Sousa F., Chemical analysis and vibrational spectroscopy study of essential oils from Lippia sidoides and of its major constituent, Vib. Spectrosc., 2020, 110, 103111. https://doi.org/10.1016/j.vibspec.2020.103111
Schulz H, Baranska M., Identification and quantification of valuable plant substances by IR and Raman spectroscopy, Vib. Spectrosc., 2007, 43, 13-25. https://doi.org/10.1016/j.vibspec.2006.06.001
Sene C, McCann MC, Wilson RH, Grinter R, Fourier-transform Raman and Fourier-transform infrared spectroscopy – an investigation of 5 higher plant cell walls and their components, Plant Physiology, 1994, 106, 1623–1631. https://doi.org/10.1104/pp.106.4.1623
Siger A, Nogala-Kalucka M, Lampart-Szczapa E., The content and antioxidant activity of phenolic compounds in cold pressed plant oils, J. Food Lipids, 2008, 15, 137-149. https://doi.org/10.1111/j.1745-4522.2007.00107.x
Silva DO, Seifert M, Nora FR, Bobrowski VL, Freitag RA, Kucera HR, Gaikwad NW, Acute Toxicity and Cytotoxicity of Pereskia aculeata, a Highly Nutritious Cactaceae Plant, J. Med. Food, 2017, 20, 403-409. https://doi.org/10.1089/jmf.2016.0133
Souza LF, Caputo L, Barros IBI, Fratianni F, Nazzaro F, De Feo V., Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities, Int. J.Mol. Sci., 2016, 17, 1478. https://doi.org/10.3390/ ijms17091478
Thygesen GL, Gierlinger N, The molecular structure within dislocations in Cannabis sativa bres studied by polarised Raman microspectroscopy, J. Struc. Biol., 2013, 182, 219–225. https://doi.org/10.1016/j.jsb.2013.03.010
Toporski J, Dieing T, Hollricher O, Confocal Raman microscopy (2nd ed.), Springer Series in Surface Sciences (66), Springer International Publishing AG, 2018.
Vieira CR, Silva BP, Carmo MAV., Effect of Pereskia aculeata Mill. in vitro and in overweight humans: A randomized controlled trial, J. Food Biochem., 2019, 43, e12903. https://doi.org/10.1111/jfbc.12903
Wu X, Gao S, Wang JS, Wang H, Huanga YW, Zhaod Y, The surface-enhanced Raman spectra of aflatoxins: spectral analysis, density functional theory calculation, detection and differentiation. Analyst, 2012, 137, 4226-34. https://doi.org/10.1039/ c2an35378d