Nernst equation applied to electrochemical systems and centenary of his Nobel Prize in chemistry

Main Article Content

Breno Nascimento Ciribelli
Flavio Colmati
Elki Cristina de Souza


Walther Hermann Nernst received the Nobel Prize in Chemistry in 1920 for the formulation of the third law of thermodynamics, thus celebrating a century in this 2020 year. His work helped the establishment of modern physical chemistry, since he researched into fields, such as thermodynamics and electrochemistry, in which the Nernst equation is included. This paper reports on several experiments that used a Daniell galvanic cell working in different electrolyte concentrations for comparing results with the theoretical values calculated by the Nernst equation. The concentration and activity coefficients values employed for zinc sulfate and copper electrolytes showed activity can replaces concentrations in thermodynamic functions, and the results are entirely consistent with experimental data. The experimental electromotive force from standard Daniell cell, for ZnSO4 and CuSO4, with unitary activity and in different concentrations at room temperature is in agreement with those from theoretical calculations. Cu2+ ion concentrations and temperature were simultaneously varied; however, the cell potential cannot be included in calculations of Nernst equation for different temperatures than 25 °C because the standard potential value was set at 25 °C. The cell potential decreases drastically when the Cu2+ concentration was reduced and the temperature was above 80 oC.


Download data is not yet available.

Article Details

How to Cite
Ciribelli, B. N., Colmati, F., & Souza, E. C. de. (2020). Nernst equation applied to electrochemical systems and centenary of his Nobel Prize in chemistry . International Journal for Innovation Education and Research, 8(11), 670–683.
Author Biographies

Breno Nascimento Ciribelli, Universidade Federal do Tocantins

Environmental Chemistry

Flavio Colmati, Universidade Federal de Goiás (UFG), Goiânia, Brazil

Instituto de Química

Elki Cristina de Souza, Universidade Federal do Tocantins

Environmental Chemistry


A. Boulabiar, K. Bouraoui, M. Chastrette, and M. Abderrabba, “A historical analysis of the Daniell cell and electrochemistry teaching in French and Tunisian Textbooks”, Journal of the Chemical Education 81(5) 2004, pp. 754-757. 10.1021/ed081p754.

A. I. Vogel, Qualitative inorganic analysis, Longman Group Limited, ©1979, London.

B. N. Ciribelli, and E. C. Souza, “Determinação experimental da força eletromotriz de pilhas Zinco/Cobre em diferentes condições do meio eletrolítico e pela equação de Nernst” In: I Congresso Tocantinense de Química: Desafios e perspectivas profissionais. 2018, pp 16.

B. Pierozynski, “On the low temperature performance of the nickel-metal hydride (NIMH) batteries, International Journal of Electrochemical Science 6(4) 2011, pp. 860-866.

C. K. Nascimento, and J. P. Braga, “Uma aula de Walther Nernst no Brasil” Química Nova 42(3), 2019, pp. 361-364.

D. Linden, Handbook of Batteries.ed.; Mc Graw-Hill, New York:, 1995, pp 33.1-33.9.

E. A. Ticianelli and E.R. Gonzalez, Eletroquímica: princípios e aplicações, São Paulo: Edusp, 2013 pp. 176-188.

E. C. Souza, and E. A. Ticianelli, “Estudo do efeito do tratamento superficial por moagem sobre as propriedades das partículas de uma liga de hidreto metálico”, Química Nova. 29(2), 2006, pp.216-222.

E. C. Souza, and E. A. Ticianelli, “Effect of partial substitution of nickel by tin, aluminum, manganese and palladium on properties of LaNi5-type metal hydride alloys” Journal of the Brazilian Chemical Society 14(4) 2003, pp. 544-550.

E. C. Souza, C. A. Fortulan, and M.D.A. Rollo, “Microstructure by thermal attack under vacuum of a superduplex stainless steels and electrochemical behavior in H2S/CO2 saturated synthetic seawater”, Journal of the Brazilian Chemical Society 29(9), 2018, pp. 1803-1810.

E.C. Souza, J.F.R. de Castro, and E.A. Ticianelli, “A new electrode material for nickel-metal hydride batteries:MgNiPt alloy prepared by ballmilling”, Journal of Power Sources 160(2) pp. 1425-1430 2006.

F. Letowski, and G. Pinard-Legry, “Potential of the Pb, PbSO4/H2SO4 electrode at temperatures up to 240 oC” Electrochimica Acta, 26(2), 1981, pp.245-253.

G. F. Martins, “Why the Daniel cell works!” Journal of the Chemical Education 67(6) 1990, pp 482. 10.1021/ed067p482.

G. Li, X. Lu, J.Y. Kim, V.V. Viswanathan, K.D Meinhardt, M.H.; Engelhard, and V.L. Sprenkle, “Batteries: An Advanced Na-FeCl2 ZEBRA Battery for Stationary. Energy Storage Application”, Advanced Energy Materials, 5(12), 2015, pp. 1-7.

H. D. McSwiney, “Thermodynamics of a galvanic cell: A physical chemistry experiment” Journal of the Chemical Education 59(2), 1982, pp. 165.

I-T. Lu, Y-C. Hsieh, P-C. Chen, and P-W Wu. “EQCM Study on pulse current Pt electrodeposition” International Journal of Electrochemical Science 10(12), 2015, pp. 10199-10209.

J. C. Danilewicz, P. Tunbridge, and P. A. Kilmartin, “Wine reduction potentials: are these measured values really reduction potentials?”, Journal of Agricultural and Food Chemistry, 67(15), 2019, pp.4145-4153. 10.1021/acs.jafc.9b00127

J. T. Austing and J. M. Seminario, “DFT study of nano zinc/copper voltaic cells”, Journal of Molecular Modeling, 24(103), 2018, pp. 2-17.

J. Wang, P. Nie, G. Xu, J. Jiang, Y. Wu, R. Fu, H. Dou, and X. Zhang, “High-Voltage LiNi0.45Cr0.1Mn1.45O4 Cathode with superlong cycle performance for wide temperature lithium-ion batteries”, Advanced Functional Matererials, 28(4) 2018, pp. 1704808(1-9). /

J-J. Hwang, J-S.Hu, and C-H. Lin, “A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles”, The Scientific World Journal, article id 363094, 2015. 10.1155/2015/363094

K. Lacina, J. Sopoušek, P. Skládal, and P.Vanýsek, “Boosting of the output voltage of a galvanic cell”, Electrochimimica Acta 282, 2018, pp. 331-335.

L. Fabbrizzi, “Strange Case of Signor Volta and Mister Nicholson: How Electrochemistry Developed as a Consequence of an Editorial Misconduct”, Angewandte Chemie International Edition 58(18) 2019, pp. 5810–5822. 10.1002/anie.201813519

L. Nascimento, L. C. L. Agostinho, and B. F. Cavalcanti, “Thermodynamic study of iron in alloys of quasicrystalline AlCuFe”, Journal of the Chilean Chemical Society 58(1), 2013, pp. 1609-1613.

L.S. Rodrigues J. Andrade, and L. H. S. de Gasparotto, “Electromotive force versus electrical potential difference: Approaching (but not yet at) equilibrium”, Journal of the Chemical Education, 95(10), 2018, pp. 1811-1815. 10.1021/acs.jchemed.8b00249

M. A. Roscher, and O.Bohlen, “OCV Hysteresis in Li-Ion Batteries including two-phase transition materials”, International Journal of Electrochemistry, article id 984320, 2011,pp. 1-6. doi:10.4061/2011/984320

M. L. Thompson, and L. J. Kateley, “The Nernst equation: Determination of equilibrium constant for complex ions of silver” Journal of the Chemical Education 76(1) 1999, pp. 95-96.

M. M. Walczak, D. A. Dryer, D. D. Jacobson, M. G Foss, and N. T. Flynn, “pH dependent redox couple:an illustration of the Nernst Equation”, Journal of the Chemical Education 74(10) 1997, pp. 1195-1197.

O. D. Whittemore, and D. Langmuir, “Standard Electrode Potential of Fe3+ + e- = Fe2+ from 5-35 oC” Journal of the Chemical and Engineering 17(3), 1972, pp. 288- 290

O. Fatibello-Filho, T.A. Silva, F.C., Moraes, and B.C. Janegitz, “Potenciometria – Aspectos teóricos e práticos”, EdUFSCar267p. 2019, pp.11-123.

P. Coffey, Chemical free energies and the third law of thermodynamics, HSPS, Volume 36, Part 2, pages 365-396. ISSN 0890-9997. ©2006 by The Regents of the University of California.

P. Gallone, “Galvani’s frog:Harbinger of a new era”, Electrochimica Acta 31(12), 1986 pp. 1485-1490. 10.1016/0013-4686(86)87065-7

S. G. Bratsch, “Standard electrode potentials and temperature coefficients in water at 298.15K”, Journal of Physical and Chemical Reference Data. 18(1), 1989, pp.1-21.

S. Ma, M. Jiang, P. Tao, C. Song, J. Wu, J. Wang, T. Deng, and W. Shang, “Temperature effect and thermal impact in lithium-ion batteries: A review” Progress in Natural Science: Materials International, 28(6) 2018, pp. 653-666.

S. Wolynec, Técnicas Eletroquímicas em Corrosão, Edusp: São Paulo, 2003, pp. 162.

S.B. Buckbee, R. E. Surdzial, and C. R. Metz, “Temperature Dependence of E° for the Daniell Cell” Proceedings of the Indiana Academy of Science, 79, 1969, pp. 123-128.

W. Moore, Físico-Química, São Paulo: Edgard Blücher, 1976, pp.198.