The Challenge In The Use Of New Technologies Integrated To Health In The Treatment Of Covid-19 A Brief Critical Analysis In Brazil

Main Article Content

Alessandro Carvalho da Fonseca
Hugo Vieira Ramos
Igor Domingos de Souza
Francisco José Mendes dos Reis
Eliza Miranda Ramos

Abstract

Viral diseases continue to emerge and annually bring challenges to the Brazilian public health system, such as COVID-19 with easy respiratory infection. This study aims to analyze the importance of new technologies in the treatment of COVID-19 and, thus, promote the information of technological data in the Brazilian territory. Therefore, methodological techniques were used in systematic reviews in the selection of included studies to be used in the construction of this short and critical systematic review. And 08 articles were included for inclusion in this critical analysis.

Downloads

Download data is not yet available.

Article Details

How to Cite
Fonseca, A. C. da ., Ramos, H. V. ., Souza, I. D. de ., Reis, F. J. M. dos ., & Ramos, E. M. . (2020). The Challenge In The Use Of New Technologies Integrated To Health In The Treatment Of Covid-19: A Brief Critical Analysis In Brazil. International Journal for Innovation Education and Research, 8(10), 263-272. https://doi.org/10.31686/ijier.vol8.iss10.2677
Section
Articles
Author Biographies

Alessandro Carvalho da Fonseca, EBSERH/MS, Dourados, Brazil

Brazilian Hospital Services Company

Hugo Vieira Ramos, Federal University of Mato Grosso do Sul

Faculty of Medicine

Eliza Miranda Ramos, University of Matogrosso do Sul, Campo Grande, MS, Brazil

Faculty of Medicine

References

Ayday E, Fekri F. An interative algorithm for trust management and adversary detection for delay tolerant networks. IEEE Trans. Mob. Comput. v.11, n.9, p.1514–1531. 2012.

Ali MS, et al. Administrative data linkage in Brazil: potentials for health technology assessment. Frontiers Pharmacology. September. v.10. Article 984. 2019.

Bhattoa HP et al. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients. v.12, n. 988. 2020. doi: 10.3390/nu12040988

Brasil, Agência Nacional de Vigilância Sanitária, Gerência de Avaliação Econômica de Novas Tecnologias. (2013b). Efeitos da Resolução CMED nº 02/04 no processo de análise de preços de novos medicamentos. ANVISA, Brasília.

Brasil, Agência Nacional de Vigilância Sanitária, Gerência de Avaliação Econômica de Novas Tecnologias. (2013b). Efeitos da Resolução CMED nº 02/04 no processo de análise de preços de novos medicamentos. ANVISA, Brasília.

Chen CL, Yang TT, Shih TF. A secure medical data exchange protocol based on cloud in vironment. J. Med. Syst. v.38, n.9. 2014. doi:10.1007/s10916-014-0112-3.

Burckel E., et al. Economic Impact of Providing Workplace Influenza Vaccination A Model and Case Study Application at a Brazilian Pharma-Chemical Company. Pharmacoeconomics 1999 Nov; 16 (5 Pt 2).

Curtis D, Shih E, Waterman J. Physiological signal monitoring in the waiting areas of an emergency room. In: Proceedings of body networks workshop. v.2, p.5 –8. 2008.

Evered M, Bogeholz S. A case study in access control requirements for a health information system. In: The Second workshop on Australasian information security, data mining and web intelligence, and software internationalization. 2004.

Fan Y. Network coding based privacy preservation against traffic analysis in multi-hop wireless networks. Trans. Wirel. Commun. v.10, n.6, p.834–843. 2011.

Fernández-Alemán JL, Seva-Llor CL, Toval A, Ouhbi S, Fernández-Luque L. Free web-based personal health records: analysis of functionality. J. Med. Syst. v.37, n.6, p.9990. 2013. doi:10. 1007/s10916-013-9990-z.

Fengou, MA, et al. A New Framework Architecture for Next Generation e-Health Services. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 17, NO. 1, JANUARY 2013.

Guo P, Wang J, Ji S, et al. A Lightweight Encryption Scheme Combined with Trust Management for Privacy-Preserving in Body Sensor Networks. J Med Syst. v.39, n.190. 2015. https://doi.org/10.1007/s10916-015-0341-0

Govindan K, Mohapatra P. Trust computations and trust dynamics in wireless sensor networks: a survey. IEEE Commun. Surv. v.14, n.2, p. 279–298. 2012.

Hsu CL, Lee MR, Su CH. The role of privacy protection in healthcare information systems adoption. J. Med. Syst. v.31, n.2. 2013. doi:10.1007/s10916-013-9966-z

Hong RC, Pan JX, Hao SJ, Wang M, Xue F, Xu XD. Image quality assessment based on matching pursuit. Inf. Sci. v.273, p.196–211. 2014.

Koch S. Meeting the challenges--the role of medical informatics in an ageing society. Stud Health Technol Inform. v.124, p.25-31. 2006.

Kumar P, Lee HJ. Security issues in health care applications using wireless medical sensor networks: a survey. Sensors. v.11, n.12, p. 55–91. 2012.

Li M, Lou W, Ren K. Data security and privacy in wireless body area networks. IEEE Wirel. Commun. v.17. n.1, p.51–58. 2010.

Li J, Li XL, Yang B, Sun XM. Segmentation-based image copy-move forgery detection scheme. IEEE Trans. Inf. Forensics Secur. doi:10.1109/TIFS.2014.2381872. 2015.

Marschollek M, Gietzelt M, Schulze M, Kohlmann M, Song B, Wolf KH. Wearable sensors in healthcare and sensor-enhanced health information systems: all our tomorrows? Healthc Inform Res. v.18, n.2, p.97-104. 2012. doi: 10.4258/hir.2012.18.2.97. PMID: 22844645; PMCID: PMC3402561.

Meingast M, Roosta T, Sastry S. Security and privacy issues with health care information technology. In: Proceedings of the 28th IEEE EMBS annual international conference. 2006.

Raazi SM, Kuras UR. BARI: a biometric based distributed key management approach for wireless body area networks. Sensors. v.10, n.8), p.3911–3933. 2010.

Ramos EM et al. Vitamin D produce antibodies in pandemic response to gripal viruses? A critical analysis. International Journal of Clinical Virology. v.04, p.23-26. 2020. doi: 10.29328/journal.ijcv.1001010

Ramos EM et al. COVID-19, rate of Case Factors and Nutritional Characteristics of Patients Dying in Italy and Brazil: A Critical Analysis. Global Journal of Health Science. v.12, n.7. 2020. doi:10.5539/gjhs.v12n7p133

Ren X, Li Y, Liu X, Shen X, Gao W, Li J. Computational Identification o antigenicity-associated sites in the hemagglutinin protein of a/h1n1 seasonal influenz virus. PLoS One. 2015;10(5): e0126742. doi: 10.1371/journal.pone.0126742.

Rehman OU. Performance study of localization techniques in wireless body area sensor networks. In: Proceedings of international symposium on advances in ubiquitous. 2012.

Steinhubl SR, Muse ED, Topol EJ. The emerging field of mobile health. Sci Transl Med. v.15. n.7(283), p.283rv3. 2015. doi: 10.1126/scitranslmed.aaa3487. PMID: 25877894; PMCID: PMC4748838.

Shen J, Zheng WY, Wang J, Zheng YH, Sun XM. An efficient verifiably encrypted signature from weil pairing. J. Internet Technol. v.14, n.6, p.947–952. 2014.

Tan, C. C., Wang, H. D., and Zhong, S., IBE-Lite:a lightweight identity-based cryptography for body sensor networks. IEEE Trans. Inf. Technol. Bio-Med. 13(6):926–932, 2009.

Zhang GH, Poon CC, Zhang YT. A fast key generation method based on dynamic biometrics to secure wireless body sensor networks for p-health. Conf Proc IEEE Eng Med Biol Soc. v.2010, p.2034-2036. 2010. doi:10.1109/IEMBS.2010.5626783

Zhou G. BodyQoS: adaptive and radio-agnostic QoS for body sensor networks. INFOCOM. 2009.

Wang J, Zhang ZH, Xia F. An energy efficient stable election-based routing algorithm for wireless sensor networks. Sensors. v.13, n.11, p.14301–14320. 2013.

Wang J, Zhang JW, Lee SY, Sherratt RS. Mobility based energy efficient and multi-sink algorithms for consumer home networks. Consum. Electron. v.59, n.1, 77–84. 2013.

Wimalawansa SJ. Global epidemic of coronavirus--COVID-19: What we can do to minimize risks. European Journal of Biomedical and Pharmaceutical Sciences. v.7. p.432-438. 2020.

Most read articles by the same author(s)