Forage Mass, Tillering, Nutritive Value and Root System of Ruzigrass Inoculated with Plant Growth Promoting Bacteria Associated with Doses of N-Fertilizer

Main Article Content

Artur Roque Domingues Barreiros
Ulysses Cecato
Camila Fernandes Domingues Duarte
Mariangela Hungria
Thiago Trento Biserra
Diogo Rodrigues da Silva
Divaney Mamédio
Renan Sanches
Henrique Jorge Fernandes

Abstract

The aim of this study was evaluating the effect of the inoculation of plant growth promoting bacteria (PGPB) in forage mass, tillering, nutritive value and root system of ruzigrass (Urochloa ruziziensis (R. Germ. & Evrard) Crins (syn. of Brachiaria ruziziensis) associated with doses of N-fertilizer. The bacteria inoculated were Azospirillum brasilense Ab-V5, Pseudomonas fluorescens CCTB03 and Pantoea ananatis AMG 521, plus the control treatment (non-inoculated), associated with doses of N-fertilizer (0, 50 and 100 kg N ha-1). The experiment was performed in a randomized block design, in a 4x3 factorial scheme, with four replicates, totaling 48 plots (12 m2). There were no effects of the PGPB and the use of N-fertilizer on the leaf blade, stem+sheath, forage mass, daily and yearly accumulation of forage mass. The PGPB did not have influence on the density of tillers. The doses of 50 and 100 kg of N ha-1 increased the amount of tillers. The AMG 521 strain associated with N-fertilizer provided heavier tillers. There was no effect of the PGPB on crude protein (CP), neutral detergent fiber (NDF), as well as acid detergent fiber (ADF), and in vitro digestibility of the dry matter (IVDDM).  The use of 100 kg of N ha-1 contributed to an increase in CP and a decrease in NDF. The AMG 521 strain contributed to a smaller diameter of the root. Strains CCTB03 and AMG 521 demonstrated a smaller area, length and root density when associated with the dose of 50kg of N ha-1. In general, the PGPB were not efficient in promoting productive increments in ruzigrass.

Downloads

Download data is not yet available.

Article Details

How to Cite
Barreiros, A. R. D. ., Cecato, U. ., Duarte, C. F. D. ., Hungria, M. ., Biserra, T. T. ., Silva, D. R. da ., Mamédio, D. ., Sanches, R. ., & Fernandes, H. J. . (2020). Forage Mass, Tillering, Nutritive Value and Root System of Ruzigrass Inoculated with Plant Growth Promoting Bacteria Associated with Doses of N-Fertilizer. International Journal for Innovation Education and Research, 8(10), 41-55. https://doi.org/10.31686/ijier.vol8.iss10.2634
Section
Articles
Author Biographies

Artur Roque Domingues Barreiros, Universidade Estadual de Maringá

Departamento de Zootecnia

Ulysses Cecato, Universidade Estadual de Maringá

Departamento de Zootecnia, 

Camila Fernandes Domingues Duarte, Universidade Federal da Bahia

Departamento de Zootecnia, 

Thiago Trento Biserra, Universidade Estadual de Maringá

Departamento de Zootecnia

Diogo Rodrigues da Silva, Universidade Estadual de Maringá

Departamento de Zootecnia

Divaney Mamédio, Universidade Estadual de Maringá

Departamento de Zootecnia

Renan Sanches, Universidade Estadual de Maringá

Departamento de Zootecnia

Henrique Jorge Fernandes, Universidade Estadual de Mato Grosso do Sul

Curso de Zootecnia

References

Aguirre, P. F., Olivo, C. J., Rodrigues, P. F., Falk, D. R., Adams, C. B., & Schiafino, H. P. (2018). Forage yield of Coastcross-1 pastures inoculated with Azospirillum brasilense. Acta Scientiarum. Animal Sciences, 40, e36392. https://doi.org/10.4025/actascianimsci.v40i1.36392

AOAC. (1990). Official Methods of Analysis Association of Official Analytical Chemists. Arlington, Virginia: AOAC International.

Cassán, F., & Diaz-Zorita, M. (2016). Azospirillum sp. in current agriculture: From the laboratory to the field. Soil Biology and Biochemistry, 103, 117-130. http://dx.doi.org/10.1016/j.soilbio.2016.08.020

Cecato, U., Galbeiro, S., Paris, W., Soares Filho, C. V., Teixeira, S. (2011). Uso de nitrogênio em pastagens. In U. Cecato, M. A. A. F. Barbosa, S. Galbeiro, W. Paris, F. C. A. R. Grecco, C. S. Viegas, S. Teixeira (Eds.), Simpósio de Produção Animal a Pasto, (pp. 117-162). Maringá: Sthampa.

Dobbelaere, S., & Okon, Y. (2007). The plant growth-promoting effect and plant responses. In C. Elmerich, W. E. Newton (Eds.), Associative and Endophytic Nitrogen-Fixing Bacteria and Cyanobacterial Associations, (pp. 145-170). Springer, Dordrecht, The Netherlands.

Döbereiner, J., & Ruschel, A. P. (1958). Uma nova espécie de Beijerinckia. Revista de Biologia, 1, 260-272.

Duarte, C. F. D., Cecato, U., Hungria, M., Fernandes, H. J., Biserra, T. T., Mamédio, D., Galbeiro, S., & Nogueira, M. A. (2020). Inoculação de bactérias promotoras do crescimento vegetal em Urochloa Ruziziensis. Research, Society and Development, 9, eXX. http://dx.doi.org/10.33448/rsd-v9i8.XX

Freitas, I. C. V., & Rodrigues, M. B. (2010). Fixação biológica do nitrogênio na cultura do milho. Agropecuária Técnica, 31, 143-154. https://periodicos.ufpb.br/index.php/at/article/download/4515/4636/

Fukami, J., Cerezini, P., & Hungria, M. (2018). Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express, 8, 73. https://doi.org/10.1186/s13568-018-0608-1

Fukami, J., Ollero, F. J., Megías, M., Hungria, M. (2017). Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Express, 7, 153. https://doi.org/10.1186/s13568-017-0453-7

Goering, H. K., & Van Soest, P. J. (1970). Forage fiber analyses: apparatus, reagents, procedures, and some applications (No. 379). Disponível em https://books.google.com.br/books?id=yn8wAAAAYAAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H. S., & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological research, 206, 131-140. https://doi.org/10.1016/j.micres.2017.08.016

Guimarães, S. L., Silva, E. M. B., Polizel, A. C., & Campos, D. T. S. (2011). Produção de capim marandu inoculado com Azospirillum spp. Enciclopédia Biosfera, Centro Científico Conhecer, 7, 816-825.

Holden, L. A. (1999). Comparison of methods of in vitro dry matter digestibility for ten feeds. Journal of dairy science, 82, 1791-1794. https://doi.org/10.3168/jds.S0022-0302(99)75409-3

Hungria, M., Nogueira, M. A., & Araujo, R. S. (2016). Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: an environment-friendly component in the reclamation of degraded pastures in the tropics. Agriculture, Ecosystems & Environment, 221, 125-131. https://doi.org/10.1016/j.agee.2016.01.024

Kavamura, V. N., Santos, S. N., da Silva, J. L., Parma, M. M., Ávila, L. A., Visconti, A., Zucchi, T. D., Taketani, R. G., Andreote, F. D., & Melo, I. S. (2013). Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiological research, 168, 183-191. https://doi.org/10.1016/j.micres.2012.12.002

Kochar, M., & Srivastava, S. (2012). Surface colonization by Azospirillum brasilense SM in the indole‐3‐acetic acid dependent growth improvement of sorghum. Journal of basic microbiology, 52, 123-131. https://doi.org/10.1002/jobm.201100038

Leite, R. D. C., dos Santos, J. G., Silva, E. L., Alves, C. R., Hungria, M., Leite, R. D. C., dos Santos, A. C. (2018). Productivity increase, reduction of nitrogen fertiliser use and drought-stress mitigation by inoculation of Marandu grass (Urochloa brizantha) with Azospirillum brasilense. Crop and Pasture Science, 70, 61-67. https://doi.org/10.1071/CP18105

Lopes, M. J. S., Dias Filho, M. B., dos Reis Castro, T. H., de Filippi, M. C. C., da Silva, & G. B. (2018). Effect of Pseudomonas fluorescens and Burkholderia pyrrocinia on the Growth Improvement and Physiological Responses in Brachiaria brizantha. American Journal of Plant Sciences, 9, 250-265. doi: 10.4236/ajps.2018.92021

Malavolta, E. (2006). Manual de nutrição mineral de plantas. Agronômica Ceres.

Mamédio, D., Cecato, U., Sanches, R., Silva, S. M. S., Silva, D. R., Rodrigues, V. O., Galbeiro, S., Barreiros, A. R. D., & Vicente, J. V. R. (2020). Do plant-growth promoting bacteria contribute to greater persistence of tropical pastures in water deficit? - A Review. Research, Society and Development 9, eXX. doi: http://dx.doi.org/10.33448/rsd-v9i8.XX

Marschner, P., Solaiman, Z., & Rengel, Z. (2006). Rhizosphere properties of Poaceae genotypes under P-limiting conditions. Plant and Soil 283, 11-24. doi: 10.1007/s11104-005-8295-5

Megías, E., Megías, M., Ollero, F. J., & Hungria, M. (2016). Draft genome sequence of Pantoea ananatis strain AMG521, a rice plant growth-promoting bacterial endophyte isolated from the Guadalquivir marshes in southern Spain. Genome Announcements 4, e01681-15. doi: 10.1128/genomeA.01681-15

Megías, E., Junior, F. B. R., Ribeiro, R. A., Ollero, F. J., Megías, M., & Hungria, M. (2017). Genome Sequence of Pantoea ananatis Strain AMG 501, a Plant Growth-Promoting Bacterium Isolated from Rice Leaves Grown in Paddies of Southern Spain. Genome Announcements, 5, e00848-17. doi: 10.1128/genomeA.00848-17

Moreira, F. M. D. S., Da Silva, K., Nóbrega, R. S. A., & De Carvalho, F. (2010). Bactérias diazotróficas associativas: diversidade, ecologia e potencial de aplicações. Comunicata Scientiae, 1, 74-99.

Palmer, M. A., Filoso, S., & Fanelli, R. M. (2014). From ecosystems to ecosystem services: Stream restoration as ecological engineering. Ecological Engineering, 65, 62-70. https://doi.org/10.1016/j.ecoleng.2013.07.059

Ribeiro, O. L., Cecato, U., Rodrigues, A. M., Faveri, J. C., Jobim, C. C., & Lugão, S. M. B. (2011). Biomassa radicular e reservas orgânicas em Coastcross consorciada ou não com" Arachis pintoi", com e sem nitrogênio, sob pastejo. Revista Brasileira de Saúde e Produção Animal, 12, 318-328.

Rosolem, C. A., Ritz, K., Cantarella, H., Galdos, M. V., Hawkesford, M. J., Whalley, W. R., & Mooney, S. J. (2017). Enhanced plant rooting and crop system management for improved N use efficiency. Advances in agronomy, 146, 205-239. https://doi.org/10.1016/bs.agron.2017.07.002

Sanches, R. (2017). Intensidade de pastejo e desempenho radicular do capim convert HD364 na relação com a resistência do solo à penetração. Dissertação de Mestrado. UEM: Universidade Estadual de Maringá.

Santos, H. G., Jacomine, P. K. T., Dos Anjos, L. H. C., De Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., & Cunha, T. J. F. (2018). Sistema brasileiro de classificação de solos. Brasília, DF: Embrapa.

Sarathambal, C., Ilamurugu, K., Balachandar, D., Chinnadurai, C., & Gharde, Y. (2015). Characterization and crop production efficiency of diazotrophic isolates from the rhizosphere of semi-arid tropical grasses of India. Applied Soil Ecology, 87, 1-10. https://doi.org/10.1016/j.apsoil.2014.11.004

Sbrissia, A. F., & Silva, S. C. D. (2008). Compensação tamanho/densidade populacional de perfilhos em pastos de capim-marandu. Revista Brasileira de Zootecnia, 37, 35-47. https://doi.org/10.1590/S1516-35982008000100005

Soares Filho, C. V., Cecato, U., Ribeiro, O. L., Cruz Roma, C. F. D., Jobim, C. C., Beloni, T., & Venturoli Perri, S. H. (2013). Root system and root and stem base organic reserves of pasture Tanzania grass fertilizer with nitrogen under grazing. Semina: Ciências Agrárias, 34, 2415-2426. doi: 10.5433/1679-0359.2013v34n5p2415

Spaepen, S. (2015). Plant hormones produced by microbes. In: Lugtenberg B. (eds) Principles of Plant-Microbe Interactions (pp. 247-256). Springer, Cham.

Sureshbabu, K., Amaresan, N., & Kumar, K. (2016). Amazing multiple function properties of plant growth promoting rhizobacteria in the rhizosphere soil. International Journal of Current Microbiology and Applied Sciences, 5, 661-683. http://dx.doi.org/10.20546/ijcmas.2016.502.074

Tilley, J. M. A., & Terry, R. A. (1963). A two‐stage technique for the in vitro digestion of forage crops. Grass and forage science, 18, 104-111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x

Van Groenigen, J. W., Huygens, D., Boeckx P., Kuyper, T. W., Lubbers, I. M., Rütting, T., & Groffman, P. M. (2015). The soil N cycle: new insights and key challenges. Soil, 1, 235–256. https://biblio.ugent.be/publication/6994395/file/6994403

Van Soest, P. J., Robertson, J. B., Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 3583-3597. doi: 10.3168/jds.S0022-0302(91)78551-2

Verbon, E. H., & Liberman, L. M. (2016). Beneficial microbes affect endogenous mechanisms controlling root development. Trends in plant science, 21, 218-229. https://doi.org/10.1016/j.tplants.2016.01.013

Wolfinger, R. (1993). Covariance structure selection in general mixed models. Communications in statistics-Simulation and computation, 22, 1079-1106. https://doi.org/10.1080/03610919308813143

Zhu, S., Vivanco, J. M., & Manter, D. K. (2016). Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Applied Soil Ecology, 107, 324-333. https://doi.org/10.1016/j.apsoil.2016.07.009