Evaluation of the potential toxicity of haloperidol, clozapine and a new putative antipsychotic molecule, PT-31, in an alternative toxicity model, C. elegans

Main Article Content

Cassiana Bigolin
Talitha Stella Sant’Anna Oliveira
Laura Cé da Silva
Tainara Ayres
Júlia Machado Menezes
Ivan da Rocha Pitta
Mariele Feiffer Charão
Andresa Heemann Betti


Schizophrenia is a disabling mental illness that affects approximately 1% of the world population. The treatment of this disorder is based on two generations of substances, typical antipsychotics, such as haloperidol, and atypical antipsychotics, such as clozapine, which can cause severe adverse effects. Therefore, the development of novel molecules that are safe and efficacious to treat the disease is crucial. PT-31 is a putative α2-adrenoceptor agonist effective against schizophrenia positive and cognitive symptoms in mice. C. elegans is an alternative model that has been successfully used to investigate the toxicity of a variety of substances. The present study aimed to evaluate the potential toxicity of the new molecule PT-31 and the antipsychotics haloperidol and clozapine in C. elegans. The evaluation was carried out based on toxicity endpoint tests, survival, developmental and behavioral assays. The antipsychotics haloperidol and clozapine decreased nematode survival by 30 and 40%, respectively, exposing the potential toxicity of these substances whereas PT-31 was safer based on this parameter. Similar results were obtained in the nematode developmental assay: haloperidol and clozapine significantly reduced nematode body length and area, whereas PT-31 preserved the normal development of the nematodes. The behavioral assessment was based on the frequency of body bends; none of the antipsychotics affected the locomotion rate of the nematodes, and PT-31 also did not compromise this parameter, demonstrating the safety of this new compound and reinforcing the recognized toxicity of antipsychotics.


Download data is not yet available.

Article Details

How to Cite
Bigolin, C. ., Sant’Anna Oliveira, T. S. ., Cé da Silva, L. ., Ayres, T. ., Machado Menezes, J. ., da Rocha Pitta, I. ., Feiffer Charão, M. ., & Heemann Betti, A. (2020). Evaluation of the potential toxicity of haloperidol, clozapine and a new putative antipsychotic molecule, PT-31, in an alternative toxicity model, C. elegans. International Journal for Innovation Education and Research, 8(6), 502-512. https://doi.org/10.31686/ijier.vol8.iss6.2446


WHO - World Health Organization. 2020. Schizophrenia. Available: <http://www.who.int/en/news-room/fact-sheets/detail/schizophrenia>.

S. Saha, D. Chant, J. Welham, J. McGrath, A systematic review of the prevalence of schizophrenia, Plos Medicine, 2005, 2 (5): 413-433.

T.R. Insel, Rethinking schizophrenia, Nature, 2010, 468(7321): 187-193.

M. Laruelle, Schizophrenia: from dopaminergic to glutamatergic interventions, Current Opinion in Pharmacology, 2014, 14: 97-102.

Rang, H. P., Dale, M. M., and Ritter, J. M. Farmacologia, 2011, Elsevier, 6 ed.

M. Klemp, I.F. Tvete, T. Skomedal, J. Gaasemyr, B. Natvir, and I. Aursnes, A review and bayesian meta-analysis of clinical efficacy and adverse effects of 4 atypical neuroleptic drugs compared with haloperidol and placebo, Journal of Clinical Psychopharmacology, 2011, 31 (6): 698-704.

Cordioli, A. V., Gallois, C. B., and Isolan, L. Psicofármacos, Artmed, 2011, 5 ed.

F.C. Nucifora, M. Mihaljevic, B.J. Lee, and A. Sawa, Clozapine as a model for antipsychotic development. Neurotherapeutics, Springer Nature, 2017, 14 (3): 750-761.

T. Bastiampillai, S. Allison, and A. Gupta, The clinical utility of therapeutic drug monitoring for clozapine, Australian & New Zealand Journal of Psychiatry, 2016, 51 (3): 295-296.

D. Berardis, G. Rapini, L. Olivieri, D. Di Nicola, C. Tomasetti, A. Valchera, M. Fornaro, F. Di Fabio, G. Perna, M. Di Nicola, G. Serafini, A. Carano, M. Pompili, F. Vellante, L. Orsolini, G. Martinotti, and M. Di Giannantonio, Safety of antipsychotics for the treatment of schizophrenia: A focus on the adverse effects of clozapine, Therapeutic Advances in Drug Safety, 2018, 9 (5): 237-256.

Stahl, S.M.S. Essential psychopharmacology, Nova York, Cambridge University press, 2014, 5 ed.

N. Hansen, and D. Manahan-Vaughan, Locus coeruleus stimulation facilitates long-term depression in the dentate gyrus that requires activation of - adrenergic receptors, Cerebral Cortex, 2014, 25 (7): 1889-1896.

R.T. Sudo, J.A. Calasans-Maia, S.L. Galdino, G.Z. Sudo, M.Z. Hernandez, and I.R. Pitta, Interaction of morphine with a new α2-adrenoceptor agonist in mice, The Journal of Pain, 2010, 11 (1): 71-78.

A.H. Betti, C.B. Antonio, V. Herzfeldt, M.G.D.R. Pitta, I. da Rocha Pitta, J.L. do Rego, J.C. do Rego, D. Vaudry, and S.M.K. Rates, PT-31, a α2-adrenoceptor agonist effective in schizophrenia cognitive symptoms in mice, Behavioural Pharmacology, 2019, 30 (7): 574-587.

D.K. Badyal, and C. Desai, Animal use in pharmacology education and research: the changing scenario, The Indian Journal of Pharmacology, 2014, 257-265.

P.R. Hunt. The C. elegans model in toxicity testing, Journal of Applied Toxicology, 2016, 37 (1): 50-59.

B. Chen, D.H. Hall, and D.B. Chklovskii, Wiring optimization can relate neuronal structure and function, Proceedings of the National Academy of Sciences, 2006, 103 (12): 4723-4728.

O. Hobert, The neuronal genome of Caenorhabditis elegans [online], 2005, Available on: www.ncbi.nlm.nih.gov/books/nbk154158/.

S. Brenner, The Genetics of Caenorhabditis elegans, Genetics, 1974, 77 (1): 71-94.

C. Ann, A transparent window into biology: a primer on Caenorhabditis elegans [online], 2015, Available on: <http://www.wormbook.org>.

D. Ávila, H. Helmcke, and M. Aschner, The Caenorhabiditis elegans model as a reliable tool in neurotoxicology, Sage Journals, 2012, 236-243.

M.F. Charão, C. Souto, N. Brucker, A. Barth, D.S. Jornada, D. Fagundez, D.S. Ávila, V.L.E. Lima, S.S. Guterres, A.R. Pohlmann, and S.C. Garcia, Caenorhabditis elegans as an alternative in vivo model to determine oral uptake, nanotoxicity, and efficacy of melatonin-loaded lipid-core nanocapsules on paraquat damage, International Journal of Nanomedicine, 2015, 10: 5093-5106.

G.G. Monte, J.V. Nani, M.R.A. Campos, C.D. Mas, L.A.N. Marins, L.G. Martins, L. Tasic, M.A. Mori, and M.A.F. Hayashi, Impact of nuclear distribution element genes in the typical and atypical antipsychotics effects on nematode Caenorhabditis elegans: putative animal model for studying the pathways correlated to schizophrenia, Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 92: 19-30.

M.T. Jacques, J.L. Oliveira, E.V.R. Campos, L.F. Fraceto, and D.S. Ávila, Safety assessment of nanopesticides using the roundworm Caenorhabditis elegans, Ecotoxicology and Environmental Safety, 2017, 139: 245-253.

D.R. Donohoe, E.J. Aamodt, and D.S. Osborn, Dwyer, Antipsychotic drugs disrupt normal development in Caenorhabditis elegans via additional mechanisms besides dopamine and serotonin receptors, Pharmacological Research, 2006, 54 (5): 361-372.

Q. Wu, A. Nouara, Y. Li, M. Zhang, W. Wang, M. Tang, B. Ye, J. Ding, and D. Wang, Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans, Chemosphere, 2013, 90 (3): 1123-1131.

J. Moon, J.I. Kwak, and Y.J. An, The effects of silver nanomaterial shape and size on toxicity to Caenorhabditis elegans in soil media, Chemosphere, 2019, 215: 50 – 56.

R.G. Tepper, J. Ashraf, R. Kaletsky, G. Kleemann, C.T. Murphy, and H.J. Bussemaker, PQM-1 complements DAF-16 as a key transcriptional regulator of daf-2-mediated development and longevity, Cell, 2013, 154 (3): 676-690.

C.I. Bargmann, Neurobiology of the Caenorhabditis elegans genome, Science, 1998, 282: 2028-2033.

A. Rodríguez-Ramos, M.M. Gámes-Del-Estal, M. Porta-de-la-Riva, J. Cerón, and M. Ruiz- Rubio, Impaired dopamine-dependent locomotory behavior of c. elegans neuroligin mutants depends on the catechol-o-methyltransferase comt-4, Behavior Genetics, 2017, 47 (6): 596-608.

Most read articles by the same author(s)