Optimization and synthesis of multilayer frequency selective surfaces via bioinspired hybrid techniques

Main Article Content

Wirlan Gomes Lima
Jasmine Priscyla Leite Leite de Araújo
Fabrício José Brito Barros
Gervásio Protásio Dos Santos Cavalcante
Cássio da Cruz Nogueira
Bruno Souza Lyra Castro
Miércio Cardoso De Alcântara Neto

Abstract

In this study, two bioinspired computation (BIC) techniques are discussed and applied to the project and synthesis of multilayer frequency selective surfaces (FSS) within the microwave band, specifically for C, X and Ku bands. The proposed BIC techniques consist of combining an artificial, general regression neural network to a genetic algorithm (GA) and a cuckoo search algorithm, respectively. The objective is to find the optimal values of separation between the investigated FSS. Numerical analysis of the electromagnetic properties of the device is made possible with the finite integration method (FIT) and validated through the finite element method (FEM), utilizing both softwares CST Microwave Studio and Ansys HFSS respectively. Thus, the BIC-optimized devices present good phase / angular stability for angles 10°, 20°, 30° and 40°, as well as being polarization independent. The cutoff frequencies to control the operating frequency range of the FSS, referring to transmission coefficient in decibels (dB), were obtained at a threshold of –10dB. Numerical results denote good accordance with measured data.

Downloads

Download data is not yet available.

Article Details

How to Cite
Lima, W. G. ., Leite de Araújo, J. . P. L. ., Barros, F. J. B. ., Dos Santos Cavalcante, G. P. ., Nogueira, C. da C. ., Lyra Castro, B. S., & De Alcântara Neto, M. C. . (2020). Optimization and synthesis of multilayer frequency selective surfaces via bioinspired hybrid techniques. International Journal for Innovation Education and Research, 8(5), 542-561. https://doi.org/10.31686/ijier.vol8.iss5.2371
Section
Articles
Author Biographies

Wirlan Gomes Lima, Federal University of Pará

Telecommunication and Computation Laboratory

Jasmine Priscyla Leite Leite de Araújo, Federal University of Pará

Telecommunication and Computation Laboratory

Fabrício José Brito Barros, Federal University of Pará

Telecommunication and Computation Laboratory

Gervásio Protásio Dos Santos Cavalcante, Federal University of Pará

Telecommunication and Computation Laboratory

Cássio da Cruz Nogueira, Federal University of Pará

Telecommunication and Computation Laboratory

Bruno Souza Lyra Castro, Federal University of Pará

Telecommunication and Computation Laboratory

Miércio Cardoso De Alcântara Neto, Federal University of Pará

Telecommunication and Computation Laboratory

References

A.H. Alavi, and A H. Gandomi, “A robust data mining approach for formulation of geotechnical engineering systems”, International Journal of Computer Aided Methods in Engineering-Engineering Computations, vol. 28, no. 3, 2011, pp. 242-74.

S. Ali, N. Abbadeni, M. Batouche, “Multidisciplinary computational intelligence techniques: applications in business, engineering, and medicine”, IGI Global Snippet, 2012.

M.C. Alcantara Neto, H.R.O. Ferreira, J.P.L. Araujo, F.J.B. Barros, A. Gomes Neto, M.O. Alencar, G.P.S. Cavalcante, “A new compact, broadband, and dual-band FSS for satellites applications, optimized through hybrid bioinspired multiobjective technique”, IET Microwaves, Antennas & Propagation, 2020, pp.1-9.

M.C. Alcantara Neto, J.P.L. Araujo, R.J.S. Mota, F.J.B. Barros, F.H. Ferreira, G.P.S. Cavalcante, B.C. Lyra, “Design and Synthesis of an Ultra Wide Band FSS for mm-Wave Application via General Regression Neural Network and Multiobjective Bat Algorithm”, Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 18, (4), 2019, pp. 530-544.

Z. Cui, R. Alex, R. Akerkar, X.S. Yang, “Recent advances on bioinspired computation”, The Scientific World Journal, 2014, pp. 1-3.

X. S. Yang, and S. Deb, “Cuckoo search via Lévy flights”, in: Proc. of World Congress on Nature & Biologically Inspired Computing (NaBic 2009), IEEE Publications, 2009, USA, pp. 2010-2014.

M.C. Alcantara Neto, J.P.L. Araujo, F.J.B. Barros, A.N. Silva, G.P.S. Cavalcante, A.G. D’Assuncao, “Bioinspired multiobjective synthesis of x-band FSS via general regression neural network and cuckoo search algorithm”, Microwave and Optical Technology Letters, 57, (10), 2015, pp. 2400-2405.

M.C. Alcântara Neto, F.J.B. Barros, J.P.L. Araújo, H.S. Gomes, G.P.S. Cavalcante, A.G. d’Assunção, “A metaheuristic hybrid optimization technique for designing broadband FSS”, SBMO/IEEE MTT-S Int. Microwave and Optoelectronics Conference (IMOC), Porto de Galinhas, Brazil, November 2015, pp. 3-6.

W.C. Araújo, H.W.C. Lins, A.G. d’Assunção Jr, J.L.G. Mederios, A.G. d’Assunção, “A bioinspired hybrid optimization algorithm for designing broadband frequency selective surfaces”, Microwave and Optical Technology Letters, 56, (2), 2013, pp. 329–333.

A. Hoorfar, “Evolutionary programming in electromagnetic optimization: a review”, IEEE Trans. Antenna and Propagation, 2007, pp. 523–537.

Munk, B. A., “Frequency Selective Surfaces: Theory and Design”, [S.l.]: John Wiley & Sons, Inc., 2000.

M. Lambea, M. A. Gonzalez, J. A. Encinar, and J. Zapata, “Analysis of frequency selective surfaces with arbitrarily shaped apertures by finite element method and generalized scattering matrix”, IEEE Antennas and Propagation Society International Symposium. [S.l.]: IEEE, v. 4, 1995, p. 1644–1647.

A. C. C. Lima, E. A. Parker, and R. J. Langley, “Tunable frequency selective surface using liquid substrates”, Electronics Letters, Institution of Engineering and Technology (IET), v. 30, n. 4, 1994, p. 281–282.

Y. G. Li, Y. C. Chan, T. S. Mok, and J. C. Vardaxoglou, “Analysis of frequency selective surfaces on biased ferrite substrate”, IEEE Antennas and Propagation Society International Symposium. Digest. [S.l.]: IEEE, 1995, p. 1636–1639.

D. Specht, “A general regression neural network”, IEEE Transactions on Neural Networks, 1991. Institute of Electrical and Electronics Engineers (IEEE), 1991, v. 2, n. 6, p. 568–576.

X.S. Yang and S. Deb, “Multiobjective cuckoo search for design optimization”, Computers & Operations Research, 2013. Elsevier BV, v. 40, n. 6, 2013, pp. 1616–1624.

E.A. Nadaraya, “On estimating regression” Theory of Probability & Its Applications, Society for Industrial & Applied Mathematics (SIAM), v. 9, n. 1, 1964, p. 141–142.

G.S. Watson, “Smooth regression analysis”, Sankhya: The Indian Journal of Statistics, Serie A, v. 26, n. 4, 1964, pp. 359–372.

J. H. Holland, “Adaptation in natural and artificial systems”, University of Michigan Press: Ann Arbor, MI, 1975.

D.E. Goldberg, “Genetic algorithms in search, optimization and machine learning”, Addison-Wesley, 1989.

D. Beasley, D. R. Bull, and R. Martin, “An overview of genetic algorithms: Part 1, fundamentals”, Univ. Comput., 1994, v. 15.

N.A. Kumar, “Efficient hierarchical hybrids parallel genetic algorithm for shortest path routing”, 2014 5th International Conference - Confluence The Next Generation Information Technology Summit (Confluence). [S.l.]: IEEE, 2014.

Z. Konfrist, “Parallel genetic algorithms: advances, computing trends, applications and perspectives”, 18th International Parallel and Distributed Processing Symposium, Proceedings. [S.l.]: IEEE, 2004.

M. Farshbaf, M.R. Feizi-Derakhshi, “Multi-objective optimization of graph partitioning using genetic algorithms”, Third International Conference on Advanced Engineering Computing and Applications in Sciences, Proceedings. [S.l.]: IEEE, 2009.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II”, IEEE Transactions on Evolutionary Computation, v. 6, n. 2, 2002, pp. 182–197.

X.S. Yang and S. Deb, “Cuckoo search: recent advances and applications”, Neural Computing and Applications, Springer Nature, v. 24, n. 1, 2013, pp. 169–174.