LAYING PRODUCTIVITY WITH CONSTANT RENEWAL IN WATER FOUNTAINS DURING HEATWAVE

Authors

  • Gislaine Trecenti Teixeira 1São Paulo State University (UNESP), Faculty of Agricultural and Technological Sciences, Dracena/SP
  • Leda Gobbo de Freitas Bueno São Paulo State University (UNESP), Faculty of Agricultural and Technological Sciences, Dracena/SP
  • Daiane Dantas Fagundes 1São Paulo State University (UNESP), Faculty of Agricultural and Technological Sciences, Dracena/SP
  • Nilce Maria Soares 2Instituto Biológico - Bastos Research and Development Unit, Gaspar Ricardo Avenue, 1700, Bastos/SP
  • Mario Mollo Neto Paulista State University (UNESP), Faculty of Science and Engineering, Tupã https://orcid.org/0000-0002-8341-4190

DOI:

https://doi.org/10.31686/ijier.vol8.iss3.2235

Keywords:

ambience, equipment, water, extreme climate

Abstract

This study aimed to evaluate the effect of the water renewal system of drinking fountains in laying hens and its relationship with productivity. For this, 5,000 laying hens of the Dekalb White line were used in each shed, which received food and water ad libitum. The warehouses had a conventional typology, Californian type. For this, a digital water renewal system was installed in three nipple drinking fountains in one of the warehouses (treatment 2 - T2) and the other remained without the water renewal system (treatment 1 - T1). Using Thermo hygrometers, the average air temperature (° C) and the average relative humidity of the air (%) were measured. For the water temperature (° C), a water renewal system (Flushing Control® - Lubing model) was used, which carried out the renewal of the birds' drinking water six times a day. Feed consumption (g / bird / day), water consumption (ml), egg production (%) and mortality (%) were evaluated. During the study period, using data from the weather station, the occurrence or not of heatwaves was defined. A completely randomized design (DIC) was performed in a 2 × 2 factorial scheme (two sheds: conventional system and with water renewal; with and without heatwave) and the data were subjected to analysis of variance (5%). It concludes the efficiency of the use of the water renewal system for zootechnical performance, during the heatwave, but the use of air conditioning systems and measures to reduce the direct radiation in the birds and installation is still necessary. There was a positive influence (p <0.05) in the use of the water renewal system for water temperature (° C), water consumption (ml) and egg production (%). In the presence of a heatwave, the feed and water consumption variables were lower (p <0.05). There was no interaction between the systems and the presence of heatwaves. It is concluded that the use of a water renewal system has benefits in zootechnical indexes, however, it does not interact with the presence of heatwaves.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Mario Mollo Neto, Paulista State University (UNESP), Faculty of Science and Engineering, Tupã

References

[1] ABPA - ASSOCIAÇÃO BRASILEIRA DE PROTEÍNA ANIMAL (ABPA). Relatório anual 2018. São Paulo, SP. 2018. Disponível em:http://abpa-br.com.br/storage/files/relatorio-anual-2018.pdf. Acesso em: 24 mar. 2018.
[2] PEREIRA, D. F.; VALE, M. M.; ZEVOLLI, B. R.; SALGADO, D. D. O cálculo da mortalidade em colocar galinhas como os aumentos da temperatura ambiente. Revista Brasileira de Ciência Avícola, v. 12, n. 4, p. 265-271, 2010.
[3] SÃO PAULO. Com 5 bilhões de ovos por ano, Bastos é maior produtora de SP. 2018. Disponível em: http://www.saopaulo.sp.gov.br/spnoticias/com-5-bilhoes-de-ovos-por-ano-bastos-e-maior-produtor-do-estado/. Acesso em: 20 set. 2019.
[4] SALGADO, D. D.; NÄÄS, I. A. Avaliação de risco à produção de frango de corte do estado de São Paulo em função da temperatura ambiente. Engenharia Agrícola, Jaboticabal, v. 30, n. 3, p. 367-376, maio/jun., 2010.
[5] RIQUENA, R. S.; PEREIRA, D. F.; VALE, M. M.; SALGADO, D. A. Previsão de mortalidade de galinhas poedeiras devido a onda de calor. Revista Ciência Agronômica, v. 50, n. 1, p. 18-26, jan./mar., 2019.
[6] UBA - UNIÃO BRASILEIRA DE AVICULTURA. Protocolo de bem-estar para aves poedeiras. São Paulo: [s.n.], 2008.
[7] PALHARES, J. C. P. Impacto ambiental na produção de frangos de corte: revisão do cenário brasileiro. In: MANEJO ambiental na avicultura. [S.l.]: EMBRAPA, 2011. p. 149. (Série Documentos). Disponível em: http://cnpsa.embrapa.br/sgc/sgc_publicacoes/publicacao_s3v74t2l.pdf. Acesso em: 07 set. 2019.
[8] KLOSOWSKI, E. S.; CAMPOS, A. T.; GASPARINO, E.; CAMPOS, A. T.; AMARAL, D. F. Temperatura da água em bebedouros utilizados em instalações para aves de postura. Engenharia Agrícola, v. 24, 2004. DOI 10.1590/S0100-69162004000300002.
[9] GAMA, N. M. S. Q.; GUASTALLI, E. A. L.; AMARAL, L. A.; FREITAS, E. R.; PAULILLO, A. C. Parâmetros químicos e indicadores bacteriológicos da água utilizada na dessedentação de aves nas granjas de postura comercial. Arquivos do Instituto Biológico, v. 71, n. 4, p. 423-430, 2004.
[10] VIOLA, E. S.; VIOLA, T. H.; LIMA, G. J. M. M; AVILA, V. S. Água na avicultura: importância, qualidade e exigências: manejo ambiental na avicultura. Concórdia: EMBRAPA. 2011. p. 149. Disponível em: http://cnpsa.embrapa.br/sgc/sgc_publicacoes/publicacao_s3v74t2l.pdf. Acesso em: 09 maio 2019.
[11] OLIVEIRA, D.; NASCIMENTO, J. W. B.; CAMERINI, N. L.; SILVA, R. C.; FURTADO, D. A.; ARAUJO, T. G. P. Desempenho e qualidade de ovos de galinhas poedeiras criadas em gaiolas enriquecidas e ambiente controlado Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 18, n. 11, p. 1186–1191, 2014.
[12] BROSSI, C.; CONTRERAS-CASTILLO, C. J.; AMAZONAS, E. A.; MENTEN, J. F. M. Estresse térmico durante o pré-abate em frangos de corte. Ciência Rural, Santa Maria, v. 39, n. 4, p. 1296-1305, jul., 2009.
[13] ABREU, V. M. N.; ABREU, P. G. Os desafios da ambiência sobre os sistemas de aves no Brasil. Revista Brasileira de Zootecnia. v. 40, p.1-14, 2011.
[14] GAMA, N. M. S. Q.; TOGASHI, C. K.; FERREIRA, N. T.; BUIM, M. R.; GUASTALLI E. L.; FIAGÁ, D. A. M. Conhecendo a água utilizada para as aves de produção. Instituto Biológico, São Paulo, v. 70, n. 1, p. 43-49, jan./jun. 2008.
[15] INMET - INSTITUTO NACIONAL DE METEOROLOGIA. Banco de Dados meteorológicos para ensino e pesquisa, 2017. Disponível em: http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep. Acesso em: 09 set. 2019.
[16] ROSSATO, P. S.; SARTORI, M. G. B.; MISSIO, L. R. As ondas de calor na região central do RS entre os meses de maio a outubro. Simpósio Brasileiro de Geografia Física Aplicada, v. 10, 2003.
[17] R CORE TEAM. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2019. Disponível em: https://www.R-project.org/. Acesso em: 28 jan. 2020.
[18] BAÊTA, F. C.; SOUZA, C. F. Ambiência em edificações rurais: conforto animal. 2. ed. Viçosa: UFV, 2010. 269 p.
[19] LAMARCA, D. S. F.; PEREIRA, D. F.; MAGALHÃES, M. M.; SALGADO, D. D. Climate Change in Layer Poultry Farming: Impact of Heat Waves in Region of Bastos, Brazil. Revista Brasileira De Ciência Avícola, v. 20, p. 657-664, 2018.
[20] SILVA, P.; KALUBOWILA, A. Influence of feed withdrawalfor three hour time period on growth performance and carcass parameters of later stage of male broiler chickens. Iranian J. Appl. Anim. Sci., v. 2, p. 191–197, 2012.
[21] ALLAHVERDI, A.; FEIZI, A.; TAKHTFOOLADI, H.A.; NIKPIRAN, H. Effects of Heat Stress on Acid-Base Imbalance, Plasma Calcium Concentration, Egg Production and Egg Quality in Commercial Layers. Global Veterinaria, v.1 0, n. 2, p. 203-207, 2013.
[22] MACARI, M.; FURLAN, R. L.; GONZALES, E. Fisiologia aviária aplicada a frangos de corte. Jaboticabal: FUNEP, 1994. p. 296.
[23] ABREU, V. M. N.; ABREU, P. G. Temperatura da água em bebedouros tipo calha. Concórdia: EMBRAPA-CNPSA, 2000. 3p. (Comunicado Técnico, 265).
[24] SILVA, J. H. V.; JORDÃO FILHO, J.; COSTA, F. G. P.; LACERDA, P. B.; VARGAS, D. G. V.; LIMA, M. R. Exigências nutricionais de codornas. Revista Brasileira de Saúde e Produção Animal, v. 13, n. 3, p. 775-790, 2012.
[25] FARGHLY M. F. A.; MAHROSE KH. M.; GALAL, A. E.; REHAM M. ALI; ENAS A. M. AHMAD; REHMAN, Z.; DING, C. Implementation of different feed withdrawal times and water temperatures in managing turkeys during heat stress. Poultry Science, v. 97, p. 3076–3084, 2018.
[26] PARK, S. O.; PARK B. S.; HWANGBO, J. Effect of cold water and inverse lighting on growth performance of broiler chickens under extreme heat stress. J. Environ. Biol., v. 36, p. 865–873, 2015.
[27] FAIRCHILD, B. D.; RITZ, C. W. Poultry drinking water primer. Athens: University of Georgia, 2006. (Cooperative Extension Bulletin, 1301).
[28] VERCESE, F.; GARCIA, E. A.; SARTORI, J. R.; PONTES SILVA, A. P.; FAITARONE, A. B. G.; BERTO, D. A.; MOLINO, A. B.; PELÍCIA, K. Performance and egg quality of japanese quails submitted to cyclic heat stress. Brazilian Journal of Poultry Science. v. 14, p. 37-41, 2012.
[29] XIN, H.; GATES, R. S.; PUMA, M. C. Drinking water temperature effects on laying hens subjected to warm cyclic environments. Poultry Science, v. 81, n.8, p. 608-617, 2002. [30] DAMRON, B. L. Water for poultry. Flórida: Gainesville: University of Florida, 2002.
[30] ROSTAGNO, H. S.; ALBINO, L. F. T.; HANNAS, M. I.; DONZELE, J. L.; SAKOMURA, N. K.; PERAZZO, F. G.; SARAIVA, A.; TEIXEIRA, M. V.; RODRIGUES, P. B.; OLIVEIRA, R. F.; BARRETO, S. L. T.; BRITO, C. O. Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais. 4. ed. Viçosa (MG): Universidade Federal de Viçosa, 2017.

Downloads

Published

2020-03-01
CITATION
DOI: 10.31686/ijier.vol8.iss3.2235

How to Cite

Trecenti Teixeira, G. ., Gobbo de Freitas Bueno, L. ., Dantas Fagundes, D. ., Maria Soares, N. ., & Mollo Neto, M. (2020). LAYING PRODUCTIVITY WITH CONSTANT RENEWAL IN WATER FOUNTAINS DURING HEATWAVE. International Journal for Innovation Education and Research, 8(3), 460–472. https://doi.org/10.31686/ijier.vol8.iss3.2235
Received 2020-02-17
Published 2020-03-01

Most read articles by the same author(s)