Supervisory System For Monitoring, Control And Estimating Thermal Comfort For Broiler and Laying Hens Production Sheds

Main Article Content

Mario Mollo Neto
Mariana Matulovic
Paulo Sérgio Barbosa dos Santos

Abstract

This research aims to promote the project for the construction of software, firmware, and micro-controlled hardware, which together allow the automatic control of the temperature and humidity index (THI) in real-time the intensive production environment in poultry and laying hens production houses, thus avoiding productive losses due to the stress to which the birds are subjected. This system aims, from the information from a set of sensors, connected to a microcontroller acquisition and control board, to infer the temperature and humidity index from the measured climatic variables, to enable the corresponding activation of electronic interfaces with electric actuators, for the automatic activation of ventilation devices, humidification and curtain actuation and the lighting of production houses, keeping the environmental conditions of the house within a convenient range of temperature and relative humidity to ensure thermal comfort and thus avoiding bird stress. Thus, helping to mitigate production losses and facilitating managers real-time monitoring of the shed to achieve greater productivity and competitiveness.

Downloads

Download data is not yet available.

Article Details

How to Cite
Mollo Neto, M., Matulovic, M., & Sérgio Barbosa dos Santos, P. (2020). Supervisory System For Monitoring, Control And Estimating Thermal Comfort For Broiler and Laying Hens Production Sheds. International Journal for Innovation Education and Research, 8(3), 316–331. https://doi.org/10.31686/ijier.vol8.iss3.2232
Section
Articles
Author Biography

Mario Mollo Neto, Paulista State University (UNESP), Faculty of Science and Engineering, Tupã

Unidade: Faculdade de Ciências e Engenharia (Câmpus de Tupã)

Unidade de Lotação: Coordenadoria de Curso de Engenharia de Biossistemas

Regime: RDIDP Titulação: MS-5.1

Contato: mario.mollo@unesp.br

Engenharia de Biossistemas - Faculdade de Ciências e Engenharia (Câmpus de Tupã)

References

[1] RIQUENA, R. S., PEREIRA, D. F., VALE, M. M., SALGADO, D. D. Mortality prediction of laying hens due to heat waves. Revista Ciência Agronômica, 50(1), 18-26, 2019. https://dx.doi.org/10.5935/1806-6690.20190003

[2] GRANDIN, T. Design of loading facilities and holding pans. Animal Science Department, Colorado State University, 2013. Available at: Accessed: 10/10/ 2015.

[3] VAN HOEK, A. H., DE JONGE, R., VAN OVERBEEK, W. M., BOUW, E., PIELAAT, A., SMID, J. H., MALORNY, B., JUNKER, E., LOFSTROM, C., & PEDERSEN, K. A quantitative approach towards a better understanding of the dynamics of Salmonella spp. in a pork slaughter-line. International Journal of Food Microbiology, v. 153, p. 45–52, 2012.

[4] PRIETO M. T.; CAMPO, J. L. Effect of heat and several additives related to stress levels on fluctuating asymmetry, heterophil:lymphocyte ratio, and tonic immobility duration in white leghorn chicks. Poultry Science, V. 89, N.3, p.:2071-2077, 2010.

[5] FRANCO-JIMENEZ, D. J.; SCHEIDELER, S. E.; KITTOK, R. J.; BROWN-BRANDL, T. M.; ROBESON, L. R.; TAIRA, H.; BECK, M. M. Differential effects of heat stress in three strains of laying hens. Journal of applied poultry research, v.16, n.2, p. 628-634, 2007.

[6] BARBUT, S. Review: Automation and meat quality-global challenges. Meat Science v. 96, p.335–345, 2014.

[7] BARBUT, S. Poultry products processing. An industry guide. New York, NY: CRC Press, 2002.

[8] NAZARENO, A. C.; PANDORFI, H.; ALMEIDA, G. L. P.; GIONGO, P. R.; PEDROSA, ELVIRA M. R.; GUISELINI, C. Avaliação do conforto térmico e desempenho de frangos de corte sob regime de criação diferenciado. Revista brasileira de engenharia agrícola e ambiental v.13, n.6, p.802–808, 2009.

[9] VALE, M. M., MOURA, D. J., NÄÄS, I. A., OLIVEIRA, S. R.. M., RODRIGUES, L. H. A.. Data mining to estimate broiler mortality when exposed to heat wave. Scientia Agricola, 65(3), 223-229, 2008. https://dx.doi.org/10.1590/S0103-90162008000300001

[10] LARA, L. J.; ROSTAGNO, M. H. Impact of heat stress on poultry production. Animals v. 3, p. 356–369, 2013.

[11] FROST, A. R.; SCHOFIELD, C. P.; BEAULAH, S. A.; MOTTRAM, T. T.; LINES, J. A.; WATHES, C. M. A review of livestock monitoring and the need for integrated systems. Computers and Electronics in Agriculture v.17, p.139-159, 1997.

[12] SRBINOVSKA, M.; GAVROVSKI, C.; DIMCEV, V.; KRKOLEVA, A.; BOROZAN, V. Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, V. in press, p. 1-11, 2014. Available at: < http://www.sciencedirect.com/science/article/pii/S0959652614003916 > Accessed: 15 de agosto de 2014.

[13] VIEIRA, M. A. M.; COELHO. JR., C. N.; SILVA JUNIOR, D. C.; MATA, J. M. Survey on Wireless Sensor Network Devices. Emerging Technologies and Factory Automation, 2003. Proceedings. ETFA '03. IEEE Conference, v. 1, p. 537 - 544, 16-19 Sept. 2003.

[14] MRIDULA, M., SHUKLA, S.R.N. Current wireless sensor nodes: performance metrics and constraints. International journal of electronic communications engineering, v.2 (1), 2013.

[15] SOUZA, A. R.; PAIXÃO, A.C.; UZÊDA, D. D.; DIAS, M. A.; DUARTE, S.; AMORIM, H. S.. A placa Arduino: uma opção de baixo custo para experiências de física assistidas pelo PC. Rev. Bras. Ensino Fís., São Paulo, v. 33, n. 1, Mar. 2011. Available at: . Accessed: 12 Setembro de 2014.

[16] KAMOGAWA, M. Y.; MIRANDA, J. C. Uso de hardware de código fonte aberto "Arduino" para acionamento de dispositivo solenoide em sistemas de análises em fluxo. Química Nova, São Paulo , v. 36, n. 8, 2013 . Available at: . Accessed: 12/09/2014.

[17] CAVALCANTE, M. A.; TAVOLARO, C. R. C.; MOLISANI, E. Física com Arduino para iniciantes. Rev. Bras. Ensino Fís., São Paulo, v. 33, n. 4, dez. 2011. Available at: . Accessed: 12/09/2014.

[18] ONACAK T. Fluid Level Sensor‐Controlled, Fully Automatic Spectrophotometry System, Instrumentation Science & Technology, 34:3, 347-357, 2006.

[19] ANDRADES, J. C.; SCHIAPPACASSA, A.; SANTOS, P. F. Desenvolvimento de um periodímetro microcontrolado para aplicações em física experimental. Rev. Bras. Ensino Fís., São Paulo, v. 35, n. 2, Jun. 2013. Available at: . Accessed: 12/09/2014.

[20] SILVEIRA, L. R.; BRITO, A. S.; MOTA, J. C. A.; MORAES, S. O.; LIBARDI, P. L. Sistema de aquisição de dados para equipamento de medida da permeabilidade intrínseca do solo ao ar. Rev. Bras. Ciênc. Solo, Viçosa , v. 35, n. 2, abr. 2011 . Available at: . Accessed: 12 set. 2014.

[21] FRITZING. Open source, free software – Electronics made easy. Available at: Accessed: 22/09/2019.

[22] WILHELM, L.R. Numerical calculation of psycrometric properties in SI units. Transactions of the ASAE, 1976.

[23] BIZAGI. Bizagi BPMN Modeler software verion 3.5.0.065, 2019. Available at: Accessed: 10/26/2019.

[24] OLIVEIRA, LUTÉRCIA M. F. DE, YANAGI JUNIOR, TADAYUKI, FERREIRA, ELIZABETH, CARVALHO, LUIZ G. DE, & SILVA, MARIANO P. DA. Zoneamento bioclimático da região sudeste do Brasil para o conforto térmico animal e humano. Engenharia Agrícola, 26(3), 823-831, 2006. https://dx.doi.org/10.1590/S0100-69162006000300020

[25] THOM, E.C. The discomfort index. Weatherwise, Boston, v.12, n.1, p.57-60, 1959.

[26] ALMEIDA, H. A.; MACHADO, R. C. R. Estimativa da duração do período de molhamento por orvalho em um ecossistema cacau. Revista Brasileira de Engenharia Agrícola e Ambiental, v.13, n.6, p. 724-728, 2009.

[27] HAHN, G.L. Management and housing of farm animals in hot environments. In: YOUSEF, M.K. (Ed.). Stress physiology in livestock. v.2, p.151-174. Florida, USA: CRC Press, 1985.

[28] NIENABER, J. A.; HAHN, G. L. Livestock production system management responses to thermal challenges. International Journal of Biometeorology v. 52, p. 149–157, 2007.

[29] ARDUINO SOFTWARE. Download the Arduino Software. Available at: Accessed: 05/08/2019.

Most read articles by the same author(s)

1 2 > >>