Equilibrium and Kinetic Studies of Cu(Ii) Removal from Aqueous Solutions Using a Kenyan Micaceous Mineral.

Main Article Content

John Namakwa Wabomba Paul Mwanza Shiundu John Mmari Onyari Ernest Yanful


Copper (II) sorption on a Kenyan micaceous mineral (Mica-K) was studied in the batch mode. The effects of different experimental parameters such as; initial concentration, contact time, sorbent dose, pH, particle size, agitation speed, competition and temperature on the kinetics of copper removal were studied. The sorption pattern of copper onto Mica-K followed Langmuir and Freundlich isotherms. Thermodynamic parameters for copper sorption on Mica-K were also determined. X-ray photoelectron spectroscopic (XPS) analysis of metal ion-equilibrated Mica-K, demonstrated that copper, cadmium and Zinc containing nodules existed on the surface of Mica-K.

Article Details

How to Cite
WABOMBA, John Namakwa et al. Equilibrium and Kinetic Studies of Cu(Ii) Removal from Aqueous Solutions Using a Kenyan Micaceous Mineral.. International Journal for Innovation Education and Research, [S.l.], v. 5, n. 4, p. 171-188, may 2017. ISSN 2411-2933. Available at: <http://ijier.net/index.php/ijier/article/view/654>. Date accessed: 29 may 2017.


Acemioglu B. and Alma M.H. (2001). Equilibrium Studies of Adsorption Of Cu(II) from Aqueous Solution onto Cellulose. Journal of colloid and interface science, 243: 81-83.
Aksu, Z., Ü. Açikel, E. Kabasakal and S. Tezer (2002), Equilibrium Modelling of Individual
and Simultaneous Biosorption of Chromium(VI) and Nickel(II) onto Dried Activated
Sludge. Water Research, 36: 3063-3073.
Arivoli S, Sudha R, Kalpana K, and Rajachandrasekar T. (2007) Comparative Study on the Adsorption Kinetics and Thermodynamics of Metal Ions onto Acid Activated Low Cost Pandanus Carbon E-Journal of Chemistry 4(2):238-254.
Asma s., Muhammad I., and Wolfgang H. H., (2009). Kinetics, Equilibrium and Mechanism of Cd2+ Removal from Aqueous Solution by Mungbean Husk. Journal of Hazardous Materials, 15; 168(2-3): 1467-1475.
Attahiru, S., Shiundu, P.M., Onyari, J.M., and Mathu, M.E., (2003). Removal of Cu (II) From an Aqueous Solution Using a Micaceous Mineral of Kenya Origin. Adsorption science and technology, 21(3): 269-283.
Benguella B, Benaissa H., (2002). Cadmium Removal from Aqueous Solutions By Chitin: Kinetic and Equilibrium Studies. Water research. 36: 2463 – 2474.
Demirbas Ayhan., (2008). Heavy Metal Adsorption onto Agro-Based Waste Materials. Journal of Hazardous Materials, 157: 220–229
Echeverria, J., Indurain, J., Churio, E. and Garrido, J. (2003). Simultaneous Effect of pH, Temperature, Ionic Strength, And Initial Concentration On The Retention of Ni on Illite. Colloids Surf A: Physicochem. Eng. Aspects, 218: 175–187.
Heechan Cho, Dalyoung Oh, Kwanho Kim (2005) A Study on Removal Characteristics of Heavy Metals from Aqueous Solution by Fly Ash. Journal of Hazardous Materials B127:187–195
Ho Y S, John W and Forster C F., (1995), Batch Nickel Removal from Aqueous Solution by Sphagnum Moss Peat. Water Res. 29: 1327-1332.
Ho Y. S., Porter J. F., McKay G. (2002). Equilibrium isotherm studies for the sorption of divalent metals ions onto peat: copper, Nickel and lead single component systems. Water, Air and Soil Pollut. 141: 1
Horsfall M. Jr., Abia A.A. Spiff A.I., (2006), Kinetic Studies on the Adsorption of Cd2+, Cu2+ and Zn2+ Ions from Aqueous Solutions by Cassava (Manihot Sculenta Cranz) Tuber Bark Waste. Bioresource Technology 97: 283–291.
Jardine P. M. and Spark D. L. (1984) Potassium-Calcium Exchange in a Multi-reactive Soil System: I. Kinetics. Soil Sci. Soc. Am. J., 48, 39-45
Kobya M, Demirbas E, Senturk E, Ince M (2005). Adsorption of Heavy Metal Ions from Aqueous Solutions by Activated Carbon Prepared from Apricot Stone. Bioresour. Technol. 96(13): 1518–1512.
Manju G.N., Krishnan K.A., Vinod V.P., Anirudhan T.S., (2002) An Investigation into the Sorption of Heavy Metals from Wastewaters by Polyacrylamide-Grafted Iron(III) Oxide. J. Hazard. Mater. B91: 221–238.
Mehmet Emin Argun, Sukru Dursun, Celalettin Ozdemir, Mustafa Karatas(2007) Heavy Metal Adsorption by Modified Oak Sawdust: Thermodynamics and Kinetics. Journal of Hazardous Materials 141: 77–85.
Mulu Berhe Desta (2013) Batch Sorption Experiments: Langmuir and Freundlich Isotherm Studies for the Adsorption of Textile Metal Ions onto Teff Straw (Eragrostis tef ) Agricultural Waste. Journal of Thermodynamics Volume 2013, Article ID 375830,
1 - 6
Narasimhan. T.N. (2008). Water, Law, Science. Journal of Hydrology., 349: 125-138.
Nesbitt H.W. and Banerjee D. (1998), Interpretation of XPS Mn(2p) Spectra of Mn Oxyhydroxides and Constraints on the Mechanism of MnO2 Precipitation American Mineralogist, 83: 305–315.
Pawel Nowak and Robert P. Socha (2006). Oxidation and dissolution of metal sulphides from flotation wastes in circulating water- the fate of sulphide sulphur. Physicochemical problems of mineral processing. 40: 135-148.
Raschid-Sally, L.and Jayakody, P. (2008). Drivers and Characteristics of Wastewater Agriculture in Developing Countries: Results From A Global Assessment. Colombo, Sri Lanka: International Water Management Institute. 35p. (IWMI Research Report 127)
Selatnia A, Bakhti M.Z., Madani A., Kertous L., Mansouri Y. (2004) Biosorption of Cd2+ from Aqueous Solution by a NaOH-treated Bacterial Dead Streptomyces Rimosus Biomass. Hydrometallurgy 75: 11– 24.
Xingyu Gao,, Swee Ching Tan, A.T.S. Wee, Junhua Wu, Lingbing Kong, iaojiang Yu H.O., Moser. C, (2006). Structural and magnetic characterization of soft-magnetic FeCo alloy nanoparticles. Journal of Electron Spectroscopy and Related Phenomena 150: 11–14.