Cyanobacteria Occurrence in Photosynthetic Stabilization Ponds

Main Article Content

Nemésio Neves Batista Salvador
Baptista Bina
Fernando Frigo


Photoautotrophic organisms, particularly cyanobacteria, have great ecological importance due to their photosynthetic capacity, and biosynthetic versatility in diverse and extreme environments. However, photosynthetic ponds, they may be serious and dangerous producers of potentially toxic toxins. Their release and bloom in treated effluent receiving bodies are a major concern because of the negative consequences on aquatic biota and the risks to public health. The aim of this study is to analyze the occurrence, composition, density and spatio-temporal distribution of cyanobacteria in sewage treatment plants by photosynthetic ponds in ten cities located in the central region of the São Paulo State, Brazil. The results recorded high densities of Microcystis sp. with a maximum average of 9.4x105 cells per millilitre (cells/mL); Synechococcus sp., with an average of 7.8x105; Synechocystis aquatilis with 7.2x105; Merismopedia tenuissima with 4.8x105; and Phormidium sp. with 1.9x105. Among these species found, the highest occurrence was M. tenuissima. The high densities show that these ponds are an aquatic environment conducive to the development of cyanobacteria and, potentially, an important source of cyanotoxin production. Therefore, studies and monitoring of the effects on the receiving water bodies are recommended by determining their cyanobacteria densities and investigating the possible presence of cyanotoxins.


Download data is not yet available.

Article Details

How to Cite
Salvador, N., Bina, B., & Frigo, F. (2018). Cyanobacteria Occurrence in Photosynthetic Stabilization Ponds. International Journal for Innovation Education and Research, 6(2), 208-220. Retrieved from
Author Biographies

Nemésio Neves Batista Salvador, Universidade Federal de São Carlos

Civil Engineering Department

Baptista Bina, Ministry of Earth

Environment and Rural Development


[1] Abdel-Raouf, N., Al-Homaidan, A.A., Ibraheem, I.B.M. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences 19: 257–275.

[2] Anagnostidis, K. & Komárek, J. (1988). Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Archiv für Hydrobiologie, Supplement 80: 327-472.

[3] Andersson A, Meier HEM, Ripszam M, Rowe O, Wikner J, Haglund P, Eilola K, Legrand C, Figueroa D, Paczkowska J, Lindehoff E, Tysklind M, Elmgren R (2015) Projected future climate change and Baltic Sea ecosystem management. Ambio 44 Suppl 3: 345-356.

[4] Anderson, P & J. Throndsen (2003). Estimating cell numbers. In Hallegraeff, G.M. Anderson D.M. & A.D. Cembella (eds) Manual on Harmful Marine Microalgae. Monogr. on Oceanogr. Method. no. 11. p.99-130. UNESCO Publishing, Paris.

[5] Aquino, E.P.; Lacerda, S.R.; Freitas, A.I.G. (2010). Cianobactérias das lagoas de tratamento de esgoto no semi-árido nordestino (Ceará, Brasil). INSULA 39: 34-46

[6] Aquino, E. P.; Oliveira, E. C. C.; Fernandes, U. L. & Lacerda, S. R. (2011). Fitoplâncton de uma lagoa de estabilização no nordeste do Brasil. Braz. J. Aquat. Sci. Technol. 15(1):71-77

[7] Azevedo, S. M. F. O. & Vasconcelos, V. (2006). Toxinas de cianobacterias: causas e consequencias para a saude pública. In: ´ Ecotoxicologia aquatica´. Pr´ncipios e Aplicacções˜ . P. A. Zagatto & E. Bertoletti (Eds.): 433-452. Ed. Rima

[8] Blomqvist, P. (2001). Phytoplankton responses to biomanipulated grazing pressure and nutrient additions-enclosure studies in unlimed and limed Lake Njupfatet, central Sweden. Environmental Pollution, 111(2), 333–348

[9] Brasil. Resolução CONAMA n ° 357 de 17 de março de 2005. Ministério do Meio Ambiente, Conselho Nacional de Meio Ambiente – CONAMA. Diário Oficial da União. Brasília, 2005

[10] Brettum, P. (1989). Algen als Indikatoren für die Gewässerqualität in norwegischen Binnenseen. Norsk institute for vannforskning NIVA. Oslo. Norway

[11] Calijuri, M. C.; Alves, M. S. A.; Dos Santos, A. C. A. (2006). Cianobactérias e Cianotoxinas em Águas Continentais. São Carlos: Rima, 118 p

[12] Chorus, I., & Bartram, J. (Eds.). (1999). Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. New York: Spon Press, p. 1-40. 1999

[13] Crayton, W. M., & Sommerfield, M. R. (1979). Composition and abundance of phytoplankton in tributaries of the lower Colorado river, Grand Canyon region. Hydrobiologia, 66, 81–93

[14] Desikachary, T.V. (1959). Cyanophyta. Indian Council of Agricultural Research, New Delhi, pp. 686

[15] Furey, A.; Crowley, J.; Hamilton, B.; Lehane, M.; James, K. J. (2005). Strategies to avoid the mis-identification of anatoxin-a using mass spectrometry in the forensic investigation of acute neurotoxic poisoning. Journal of Chromatography A, n. 1082, p. 91–97.

[16] Furtado, A. L. F. F.; Calijuri, M. C.; Lorenzi, A. S.; Honda, R. Y.; Genuário, D. B.; Fiore, M. F. (2009). Morphological and molecular characterization of cyanobacteria from a Brazilian facultative wastewater stabilization pond and evaluation of microcystin production. Hydrobiologia, Vol. 327, p. 195-209.

[17] Graham, J.L, Jones, J.R., Jones, S.B., Clevenger, T.E. (2006) Spatial and temporal dynamics of microcystin in a Missouri reservoir. Lake and Reservoir Management 22: 59-68.

[18] Harsha, T.S., Malammanavar, S.G. (2004). Assessment of phytoplankton density in relation to environmental variables in Gopalaswamy pond at Chitradurga, Karnataka. J. Environ. Biol. 25, 113–116.

[19] Karadžić, V., Subakov-Simić, G., Natić, D., Ržaničanin, A., Ćirić, M. and Z. Gačić (2013). Changes in the phytoplankton community and dominance of Cylindrospermopsis raciborskii (Wolosz.) Subba Raju in a temperate lowland river (Ponjavica, Serbia). Hydrobiologia 711, 43-60.

[20] Komárek, J., Anagnostidis, K. (1989). Modern approach to the classification system of Cyanophytes 4 - Nostocales. Algological Studies 56: 247-345.

[21] Komárek, J. & Anagnostidis, K. (2000). Cyanoprokaryota. 1. Teil, Chroococcales. In: Ettl H, Gartner G, Heynig H, Molllenhauer D ed. Susswasserflora von Mitteleuropa 19(1). Jena, Gustav Fisher. P. 548.

[22] Komárek, J. & Anagnostidis, K. (2005): Cyanoprokaryota 2. Teil/ 2nd Part: Oscillatoriales. - In: BÜDEL B., KRIENITZ L., GÄRTNER G. & SCHAGERL M. (eds): Süsswasserflora von Mitteleuropa 19/2, Elsevier/Spektrum, Heidelberg, 759 pp.

[23] Komárek, J. & Cronberg, G. (2001). Some Chroococcalean and Oscillatorialean Cyanoprokaryotes from Southern African lakes, ponds and pools. Nova Hedwigia 73: 129-160.

[24] König, A.; Sousa, M. S. M.; Costa, N. A. F.; Freitas, V. L. B.; Ceballos, B. S. O. (1999). Variação nictemeral da qualidade do efluente final de uma lagoa facultativa secundária e a influência das algas. In: 20°CONGRESSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL,1999, Rio de Janeiro, Anais... Rio de Janeiro:ABES, 1999, p. 587-595.

[25] Knoppers, BA, SS Opitz, MP de Souza & CF MigueZ. 1984. The spatial distribution of particulate organic matter and some physical and chemical water properties in Conceição Lagoon; Santa Catarina, Brazil (July 19, 1982). Arquivos de Biologia e Tecnologia, 27 (1): 59-77.

[26] Kosten, S., Huszar, V.L.M., Be´cares, E., Costa, L.S., Van Donk E.& Hansson, L.-A. (2012). Warmer climates boostcyanobacterial dominance in shallow lakes. Global ChangeBiology 18, 118–126.

[27] Lorena, L. (2015). Distribution pattern of picoplankton carbon biomass linked to mesoscale dynamics in the southern gulf of Mexico during winter conditions. Deep Sea Research Part I: Oceanographic Research Papers, Volume 106, December 2015, Pages 55–67..

[28] Muhammad, A., Salam, A., Sumayya, I., Tasveer, Z.B., Qureshi, K. A., 2005. Studies on monthly variations in biological and physicochemical parameters of brackish water fish pond, Muzaffargarh, Pakistan. J. Res. (Sci.) 16, 27–38.

[29] Oswald, W.J. (1988). Micro-algae and waste-water treatment, in Micro-algal biotechnology, M.A. Borowitzka and L.J. Borowitzka, Editors. Cambridge University press: Cambridge. p. 305–328.

[30] Padisák, J. (1997). Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Arch. Hydrobiol. Suppl. 107:563-593.

[31] Pearl, H.W., Otten, T.G. (2013). Harmful cyanobacterial blooms: causes, consequences, and controls. Microb. Ecol. 65, 995e1010.

[32] Pearson, H.W. (1987). Algae associated with sewage treatment. In: Microbial Technology in the Developing World. (Ed. E.J. da Silva, Y.R. Dommergues, E.J. Nyns and C. Ratledge). News York: Oxford University Press, p 260-288.

[33] Prentice, M. J. (2008). Temporal and spatial variations of cyanobacteria in Karori Reservoir, Wellington (Thesis, Master of Science (MSc)). The University of Waikato. Retrieved from

[34] Reynolds, C. (1984). The ecology of freshwater phytoplankton. Freshwater Biol. Ass., Cambridge Univ. Press. Cambridge.

[35] Reynolds, C. S. (1987) Community organization in the freshwater plankton. Symp. Br. Ecol. Soc., 27, 297–325.

[36] Reynolds, C. S. (1998). What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia, 369–370, 11–26.

[37] Reynolds, C. S. Ecology of phytoplankton. Cambrigde: Cambrigde University Press. 535p, 2006.

[38] Rosales-Loaiza, N., Guevara, M., Lodeiros, C., Morales, E. (2008). Crecimiento y producción de metabolitos de la cianobacteria marina Synechococcus sp. (Chroococcales) en función de la irradiancia. Rev. Biol. Trop. 56 (2): 421-9.

[39] Sangita Ganesh, Darren J Parris, Edward F DeLong, & Frank J Stewart. (2014). Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone. The ISME Journal, 8: 187–211.

[40] Sant’Anna, C. L.; Azevedo, M. T. P.; Werner, V. R.; Dogo, C. R.; Rios, F. R.; Carvalho, L. R. (2008). Review of toxic species of cyanobacteria in Brazil. Algogenical Studies, Vol. 126, p. 251-265.

[41] Sant’Anna, C.L. & Azevedo, M.T.P. (2000). Contribution to the knowledge of potentially toxic Cyanobacteria from Brazil. Nova Hedwigia, v.71, p.359-385.

[42] Santos, A.P.M.E. dos; Bracarense, A.P.F.R.L. (2008). Hepatotoxicidade associada à microcistina. Semina: Ciências Agrárias, Londrina, v. 29, n. 2, p. 417-430.

[43] Sarika S. Maske, Lalita Narendra Sangolkar, Tapan Chakrabarti (2010). Temporal variation in density and diversity of cyanobacteria and cyanotoxins in lakes at Nagpur (Maharashtra State), India. Environmental Monitoring and Assessment Volume 169, Issue 1-4 , pp 299-308.

[44] Sheath, R.G., Morgan, L.V., Hambrook, J.A. & Cole, K.M. (1996). Tundra stream, macroalgae of North. America: composition, distribution and physiological adaptations. Hydrobiologia 336: 67-82.

[45] Sivonen, K., Jones, G. (1999). Cyanobacterial toxins. In: Chorus I, Bartram J, eds, Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management, London, Spon Press, pp. 41–111.

[46] Smith, V.H. (1983). Low nitrogen to phosphorous ratios favours dominance by blue-green algae in lake phytoplankton. Science 221, 669–670.

[47] Smith, L., Boyer, G., Zimba, P.V. (2008). A review of cyanobacterial odorous and bioactive metabolites: Impacts and management alternatives in aquaculture. Aquaculture. 280: 5–20.

[48] Soltero-Santos, R.B.; sousa-silva, C. R.; Verani, N.F.; Nonaka, K.; Rocha, O. (2005). Toxicity of a cyanobacteria bloom in Barra Bonita Reservoir (Middle Tiete River, São Paulo, Brazil). Ecotoxicology and Environmental Safety, v. 64, p. 163-170.

[49] Sompong, U., Hawkins, P.R., Besley, C. & Peerapornpisal, Y. (2005). The distribution of cyanobacteria across physical and chemical gradients in northern Thailand. FEMS Microbiol Ecol 52: 365–376.

[50] Tsukamoto, R.; Takahashi, N. (2007). Cianobactérias, Civilização, Problemas para Saúde, Aquicultura, Natureza. Disponível em Acesso em 07/05/2016.

[51] Tang, E.P.Y., Vincent, W. F., Proul, D., Lessard, P. & Noüe, J. de la. (1997). Polar cyanobacteria versus green algae for tertiary waste-water treatment in cool climates. Journal of Applied Phycology 9: 371–381.
Tas, B., Gonulol, A. (2007). An ecological and taxonomic study on phytoplankton of a shallow lake, Turkey. J. Environ. Biol. 28, 439– 445.

[52] Taton, A., Grubisic, S., Balthasart, P., Hodgson, D.A., Laybourn-Parry, J. & Wilmotte, A. (2006). Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol, 57: 272-289.

[53] Tian C., H. Pei W. Hu & J. Xie. (2012). Variation of cyanobacteria with different environmental conditions in Nansi Lake, China. J. Environ. Sci. 24: 1394-1402.

[54] Utermöhl, H. 1958. Zur Vervollkomnung der quantitativen Phytoplankton-Methodik. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie, 9:1–38.

[55] Viali, L. Testes de hipóteses não paramétricos. Porto Alegre, Departamento de Estatística, Universidade Federal do Rio Grande do Sul, 2008. 43p.

[56] Vincent, W.F., Quesada, A. (2012). Cyanobacteria in high latitude lakes, rivers and seas. In: Whitton, B.A. (ed.) Ecology of Cyanobacteria II Springer, Dordrecht.

[57] Whitton, B.A. & Potts, M. (2000). The Ecology of Cyanobacteria: Their Diversity in Time and Space. Kluwer Academic Publisher, Dordrecht, The Netherlands, 669 pp.

[58] Wilhelm, S.W., Farnsley, S.E., Lecleir, G.R., Layton, A.C., Satchwell, M.F., Debruyn, J.M., Boyer, G.L., Zhu, G., Paerl, H.W. (2011). The relationships between nutrients, cyanobacterial toxins and the microbial community in Taihu (Lake Tai), China. Harmful Algae 10:207– 215.

[59] Zulkifli, H. (1992) Traitement des eaux usées par lagunage à haut rendement: structure et dynamique des peuplements phytoplanctoniques. Montpellier, France: Université Montpellier I. (Thèse de Doctorat).