Synthesis and Conductivity Studies of Tetraarylphosphonium Salts As Potential Electrolytes in Advanced Batteries

Main Article Content

Ghislain R Mandouma


The purpose of this study was to synthesize polysubstituted tetraarylphosphonium/tetrakis(pentafluorophenyl)borate salts 3, also known as TAPR/TFAB where R is a substituent, and to measure their conductance/conductivity in low-polarity media such as tetrahydrofuran (THF) and dichloromethane (DCM). Such determination was to provide a rationale to the question of whether these compounds, and other weakly coordinating cations/anions combinations are suitable electrolytes for advanced batteries which are energized in safer, low-polarity organic solvents.


Download data is not yet available.

Article Details

How to Cite
Mandouma, G. (2018). Synthesis and Conductivity Studies of Tetraarylphosphonium Salts As Potential Electrolytes in Advanced Batteries. International Journal for Innovation Education and Research, 6(2), 116-123. Retrieved from
Author Biography

Ghislain R Mandouma, Albany State University, USA

Department of Natural Sciences


1. Goodenough, GB, Park, KS. J. Am. Chem. Soc. 2013, 135, 1167-1176;
2. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D.; Energy Environ. Sci. 2011, 3243-3262;
3. Armand, M.; Tarascon, J.M. Nature, 2008, 451, 652-657;
4. Tarascon, J.M. Philos. Trans. R. Soc., A 2010, 368, 3227-3241
5. Gandini, A; Lacerda, T.M. Prog. Polym. Sci. 2015, 48, 1-39;
6. Janoschka, T.; Hager, M.D.; Schubert, U.S.; Adv. Mater. 2012, 24, 6397-6409;
7. Nishida, H.; Suga, T.; Electrochemical Society Interface 2005, 32-36;
8. Muench, S; Wild, A; Friebe, C; Haupler, B; Janoschka, T; Schubert, U.S.; Chem. Rev. 2016, 116, 9438-9484;
9. Brousse, K.; Martin, C.; Brisse, A.L.; Lethien, C.; Simon, P.; Taberna, P.L.; Brousse, T.; Leung, P.K.; Martin, T.; Shah, A.A.; Mohamed, M.R.; Anderson, M.A.; Palma, J.; Journal of Power Sources, 2017, 360, 243-283;
10. Wei, X.; Pan, W.; Duan, W.; Hollas, A.M.; Yang, Z.; Li, B.; Nie, Z.; Liu, J.; Reed, D.M.; Wang, W.; Sprenkle, V.L. ACS Energy Letters, 2017, 2(9):2187-2204. doi:10.1021/acsenergylett.7b00650;
11. Li, Y; Wang, X; Dong, S; Chen, X; Cui, G; Adv. Energy Mater. 2016, 6, 1600751;
12. Krossing, I.; Raabe, I.; Angew. Chem. Int. Ed. 2004, 76, 6395-6401;
13. Geiger, W.E.; Barriere, F.; Accounts Chem Res 2010, 43, 1030-1039;
14. Mpoukouvalas et al., Mpoukouvalas, K.; Turp, D.; Wagner, M.; Mullen, K.; Butt, H. J.; Floudas, G.; J Phys Chem B 2011, 115, 5801-5806.
15. Moritz, R,; Stangenberg, R.; Baumgarten, M.; Mullen, K.; Eur. J. Org. Chem. 2015, 7, 1456-1463;
16. Turp, D.; Wagner, M.; Enkelmann, V.; Mullen, K.; Angew. Chem. Int. Ed., 2011, 50, 4962-4965;
17. Zhao, D.S.; Moritz, N.; Laurila, P.; Mattila, R.; Lassila, L.V.J.; Strandberg, N.; Muller, R.; Macromolecules 2014, 47, 4567-4586;
18. Wehming, K.; Moritz, S.; Schnakenburg, G.; Waldvogel, S.R.; Chem Eur J 2014, 20(39), 12463-12469;
19. LeSuer, R. J.; Buttolph, C.; Geiger, W. E., Anal. Chem., 2004, 76, 6395-6401;
20. W. Schmickler, Interfacial Electrochemistry, Oxford University press, 1996;
21. O. Popovych and R.P.T. Tomkins, Nonaqueous Solution Chemistry, J. Wiley and
Sons, New York, 1981
22. Grills, D. C.; Cook, A. R.; Fujita, E.; George, M. W.; Preses, J. M.; Wishart, J. F.; Appl. Spectrosc. 2010, 64, 563;
23. Marcoux, D.; Charette, A. B. J Org Chem 2008, 73, 590-593;
24. Moritz, R.; Zardalidis, G.; Butt, H. J.; Wagner, M.; Mullen, K.; Floudas, G., Macromolecules 2014, 47, 191-196;
25. Yonekuta, Y.; Susuki, K.; Oyaizu, K.; Honda, K.; Nishide, H. J. Am. Chem. Soc. 2007, 129, 14128-14129;
26. Wei, X.; Duan, W.; Huang, J.; Zhang, L.; Li, B.; Reed, D.; Xu, W.; Sprenkle, V.; Wang, W.; ACS Energy Lett. 2016, 1, 705−711; doi: 10.1021/acsenergylett.6b00255.